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16  Abstract. Parameterization in climate models often involves parameters that are

17  poorly constrained by observations or theoretical understanding alone. Manual tuning
18 by experts can be time-consuming, subjective, and prone to underestimating
19  uncertainties. Automated tuning methods offer a promising alternative, enabling faster,
20  objective improvements in model performance and better uncertainty quantification.
21 This study presents an automated parameter-tuning framework that employs a
22 derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune
23 multiple convection-related and microphysics parameters. The framework explicitly
24 accounts for observational and initial condition uncertainties (internal variability) to
25  calibrate a 1-degree resolution atmospheric model (GAMIL3). Two experiments,
26 adjusting 10 and 20 parameters, were conducted alongside three sensitivity experiments
27  that varied initial parameter values for a 10-parameter case. Both of the first two
28  experiments showed a rapid decrease in the cost function, with the 10-parameter
29  optimization significantly improving model accuracy in 24 out of 34 variables.

30 Expanding to 20 parameters further enhanced accuracy, with improvement in 25 of 34
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31 variables, though some structural model errors emerged. Ten-year AMIP simulations
32 validated the robustness and stability of the tuning results, showing that the
33 improvements persisted over extended simulations. Additionally, evaluations of the
34  coupled model with optimized parameters showed--compare to the default parameter
35  setting--reduced climate drift, a more stable climate system, and more realistic sea
36  surface temperatures, despite a slight energy imbalance and some regional biases. The
37  sensitivity experiments underscored the efficiency of the tuning algorithm and highlight
38  the importance of expert judgment in selecting initial parameter values. This tuning
39  framework is broadly applicable to other general circulation models (GCMs),

40  supporting comprehensive parameter tuning and advancing model development.

41 1 Introduction

42 Assessing current and future climate change risks to natural and human systems
43 heavily relies on numerical simulations using advanced climate or Earth System
44 Models (ESMs). In recent decades, significant progress has been made in developing
45  the major components of the Earth system (i.e., atmosphere, ocean, land, human
46 systems, etc.) and in the coupling techniques required to form fully integrated ESMs.
47 However, many unresolved issues remain in the development of ESMs, including but
48  not limited to simulation bias in air-sea interactions (Ham et al., 2014; Bellucci et al.,
49 2021; Wki et al., 2021; Meng et al., 2022), the double Intertropical Convergence Zone
50 (ITCZ) problem (Tian et al., 2020), and the coupling of biogeochemical cycles such as
51  thecarbon cycle, nutrient cycles with the physical climate system (Erickson et al., 2008).
52 The complexity of the Earth's climate system and the inherent uncertainties in climate
53  models present significant challenges in achieving reliable projections. One of the key
54  sources of uncertainty arises from the representation of unresolved physical processes
55  through parameterizations (Gentine et al., 2021; Jebeile et al., 2023).

56 Parameterizations are crucial when accounting for processes that occur at
57 unresolved scales or are missing from the model formulation. Parameterizations
58  provide simplified representations of sub-grid processes like cloud convection and

59  turbulence, which cannot be explicitly resolved at scales smaller than the model's grid
2
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60 resolution due to computational constraints. For example, processes such as
61  atmospheric radiative transfer and cloud microphysics are too complex to be
62 represented in full detail within ESMs, so parameterizations offer simplified
63  approximations to capture their essential effects. Parameterization often involves
64  parameters whose values are frequently not well-constrained by either observations or
65 theory alone (Ludovic, 2021; Jeliele et al., 2023), which can directly affect the
66  performance of the model simulation. Consequently, parameter tuning, the process of
67  estimating these uncertain parameters to minimize the discrepancy between specific
68  observations and model results, becomes a critical step in climate model development
69  (Hourdin et al., 2017).

70 Appropriate parameter tuning can improve the accuracy and skill of climate model
71 outputs by optimizing parameter values to better match observations or high-resolution
72 simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For
73 example, parameter tuning allows adjusting the values of parameters in
74  parameterizations that approximate these unresolved processes like cloud convection,
75  turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al.,
76 2023). By tuning parameter values during the model calibration process, modelers can
77  partly compensate for known structural errors, deficiencies, or missing processes in the
78 underlying model formulation itself (Williamson et al., 2015; Hourdin et al., 2017; Tett
79 et al, 2017; Schneider et al., 2024). What’s more, exploring the range of plausible
80  parameter values through tuning allows quantifying parametric uncertainties and their
81 impacts on model outputs and projections (Jacksonet al., 2004; Neelin et al, 2010;
82  Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016).

83 Broadly speaking, parameter tuning methods aim to quickly optimize a cost
84  function that measures the distance between model simulations and a small collection
85  of observations. Applications of such methods in climate science include studies by
86  Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et
87 al. (2015), and Tett et al. (2017). For instance, in the experiments conducted by Tett et
88 al. (2017) with an atmospheric GCM, 7 and 14 parameters were estimated using

89  variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize the difference
3
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90  between simulated and observed large-scale, multi-year averaged net radiative fluxes.
91  These optimized parameters were then applied in a coupled GCM. Zhang et al. (2015)
92  utilized an improved downhill simplex method, focusing on seven parameters, and
93  reported successful optimization of an atmospheric model. This improved method
94  overcomes the limitations of the traditional downhill simplex method and offers better
95  computational efficiency compared to evolutionary optimization algorithms.

9% Traditionally, uncertain parameters have been tuned manually through extensive
97  comparisons of model simulations with available observations. This approach is
98  subjective, labor-intensive, computationally expensive, and can lead to under-
99  exploration of the parameter space, potentially underestimating uncertainties and
100  leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin
101 et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter
102 calibration techniques have advanced rapidly due to their efficiency, effectiveness, and
103 wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013;
104  Zhang et al., 2015). Bardenet et al. (2013) combined surrogate-based ranking and
105  optimization techniques for surrogate-based collaborative tuning, proposing a generic
106  method to incorporate knowledge from previous experiments. This approach can
107  effectively improve upon manual hyperparameter tuning. Zhang et al. (2015) proposed
108  a "three-step" methodology for parameters tuning. Before the final step of applying the
109  downhill simplex method, they introduced two preliminary steps: determining the
110  model's sensitivity to the parameters and selecting the optimum initial values for those
111 sensitive parameters. By following this process, they were able to automatically and
112 effectively obtain the optimal combination of key parameters in cloud and convective
113 parameterizations.

114 However, previous studies were either semi-automatic or lacked sufficient
115 observational constraints, such as the net flux at the top of the atmosphere (TOA).
116  Moreover, earlier objective tuning methods that relied on cost functions often
117 overlooked key sources of uncertainty, including observational uncertainty and the
118  internal variability of variables. To address these limitations, we developed a new

119  objective and automatic parameter tuning framework that is more efficient for tuning
4
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120  parameters in GCMs. Compared to previous automatic tuning efforts, this system
121  operates entirely within a Python environment and includes several new optimization
122 algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al.,
123 2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker,
124  2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al.,
125 2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to
126 nonlinear least-squares minimization problems without requiring derivatives of the
127  objective function, and has been numerically tested to be particularly effective in
128  finding global optimization solutions. Our framework supports multiple observations
129  and constraints as optimization targets. Additionally, it considers the internal variability
130  of GCMs and integrates sensitivity analysis with the optimization process, making it a
131 more flexible and efficient model tuning system overall. Moreover, systematically and
132 simultaneously perturbing multiple parameters addresses the concern that optimizing a
133 single objective may lead to suboptimal solutions for other objectives and might
134  overlook the global optimum for the owverall tuning metric (Qian et al., 2015;
135 Williamson et al., 2015). We have designed and implemented an automatic workflow
136 to streamline the calibration process, enhancing efficiency. This method and workflow
137  are readily applicable to GCMs, facilitating accelerated model development processes.
138 Using this framework, we tune the latest released version 3 of the Grid-Point
139  Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for
140  Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of
141 Atmospheric Physics (IAP), named GAMIL3. The newly released GAMIL3 has a
142 higher resolution (~1< compared to the previous version 2 (~2.89, and several
143 parameterization schemes related to cloud processes and microphysics have been
144  updated but not well-tuned. This study demonstrates how the tuning framework can
145  automatically and effectively optimize model parameters to achieve better performance
146  against observations.

147 Our objectives are as follows:

148 1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric

149  model;
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150 2. To investigate the impact of various parameters and initial values on the tuning
151 results;
152 3. To evaluate the performance of the optimized parameters in decadal simulations

153 and long-term coupled model runs.

154 The paper is organized as follows: Section 2 introduces the proposed automatic
155  framework, the tuning model and experiments, observational data and metrics, and the
156  tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to
157  long-tern simulations, including coupled model runs. This is followed by a discussion

158  in Section 4 and a conclusion in Section 5.

159 2 Methods

160 2.1 The automatic tuning framework

161 Here we present the automatic tuning framework (Fig. 1) we have developed,
162 whichincludes, butis not limited to, functions such as model compiling, (re)submitting,
163  parameter tuning, results evaluation, and diagnostics. Specifically, the framework
164  comprises three main processing modules that collectively control the entire system:
165  the model preprocessing module (the lower left panel in Fig. 1), the model optimizing
166 module (the middle panel in Fig. 1), and the model post-processing module (the right
167  panel inFig. 1).

168 The preprocessing module prepares various input data for the optimization process,
169  with particular focus on model internal variations and observational uncertainties (Tett
170 etal., 2017), which will be further discussed in a later section. The optimizing module,
171 which uses the DFO-LS optimization method, is the core component of this tuning
172 system and is primarily responsible for updating model parameters and running
173 simulations. In the initialization of DFO-LS, the module defines the initial parameters,
174  the initial trust region (which is an algorithm parameter) for these parameters, and any
175  parameter constraints. In this step, the system first automatically conducts perturbed
176  parameter experiments for each parameter individually, resulting in N simulations when
177 N parameters are expected to be tuned. The results from this step can be used to assess

178  the sensitivity of the variables to variations in different parameters. Next, the iteration

6
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179  process of DFO-LS begins, involving several steps essential for determining the
180  optimal parameter values. In each iteration, the algorithm refines the parameter
181  estimates and continues until the termination criteria are met, resulting in optimized
182  parameters. The post-processing module receives the output from the optimization
183  module, including the optimized parameters, the sensitivity of variables to the
184  parameters, and the cost function values from different iterations, and further analyzes

185  these results based on user requirements.

186 2.2 Model description and experiments

187 In this study, we utilize the latest version 3 of the Grid-point Atmospheric Model
188  developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences,
189  Beijing, China (IAP LASG GAMIL3). This version represents a significant
190  advancement over its predecessor, GAMIL2 (Li et al., 2013), by introducing a hybrid
191 2D decomposition that enhances parallel scalability, replacing the one-dimensional
192  parallel decomposition in the meridional direction used in GAMIL2 (Liu et al., 2014).
193  GAMIL3 features a grid structure of 360 > 160 longitude-latitude cells, providing a
194  horizontal resolution of approximately 1°, with 26 vertical o-layers (pressure
195  normalized by surface pressure) extending to the model top at 2.19 hPa. Significant
196  updates in GAMIL3 include improvements in the two-step shape-preserving advection
197  scheme (TSPAS; Yu, 1994) compared to GAMIL2 (Li et al., 2013), the inclusion of a
198  convective momentum transport scheme (Wu et al., 2007), updates to the planetary
199  boundary layer scheme, and enhancements in the stratocumulus cloud-fraction scheme
200 based on turbulence kinetic energy and estimated inversion strength (Guo and Zhou,
201 2014; Sun et al., 2016). Additionally, GAMILS3 integrates several parameterizations
202 recommended by CMIP6 to represent anthropogenic aerosol effects (Stevens et al.,
203  2017; Shietal., 2019).

204 During optimization, each model simulation is performed for 15 months, forced by
205  observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model
206  Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from

207 1 October 2010 to 31 December 2011, with the first 3 months excluded for model spin-

7
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208  up, leaving 12 months for analysis against observations. This method is commonly used
209  for model uncertainty quantification and parameter tuning (Yang et al., 2013; Xie et al.,
210  2023). After optimization, the parameter set that best fits the observations is referred to
211 asthe optimized parameter set. We use this to conduct a 10-year AMIP simulation from
212 January 1, 2005, to December 31, 2014, enabling comparison with observed climate
213  data. Additionally, to assess whether tuning atmospheric parameters results in a
214  reasonable coupled model, the GAMIL3 atmospheric model is coupled with land, ocean,
215  and sea ice models, and a 30-year piControl simulation is conducted (Eyring et al.,
216  2016). Lastly, three additional sensitivity experiments, varying the initial values of the
217  first 10 parameters, are carried out to examine the impact of initial parameter selection

218  on the optimized results.

219 2.3 Observations and parameter selection

220 To set up our optimization problem, we focus on the large-scale performance of the
221 model and consider the differences between land and ocean, particularly in the tropical
222 region. Thisregion is characterized by distinct air-sea interactions, such as those over
223 the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold
224  tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999).
225  Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis
226 into four regions: the northern hemispheric extra-tropical region (6 > 30° N), the
227  tropical region (30° S > 6 < 30° N), subdivided into tropical land and ocean, and the
228  southern hemispheric extra-tropical region (6 < 30<S).

229 The observational variables used in this study are detailed in Table 1. While most
230 variables are divided into four regions—Ilabeled _TROPICSLAND,
231 _TROPICSOCEAN, _NHX, and _SHX—each with its own target and uncertainty,
232 NETFLUX is averaged over all regions and serves as a global constraint. Specifically,
233 the target values for variables T500, RH500, and MSLP are derived from ECMWF
234  Reanalysis v5 data (ERAS5; Hershach et al., 2020); the radiation variables (OLR, OLRC,
235 RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy
236 System (CERES; Wielicki et al., 1998); and the LAT and PRECIP data come from the

8
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237  Climatic Research Unit (CRU; Jones et al., 2012; Harris et al., 2017). The uncertainties
238 of the variables are derived from the absolute error among different data sources, which
239 will be discussed in a later section. All targets and uncertainties of the variables in Table
240 1 are for the year 2011, primarily used for model optimization.

241 The atmospheric model parameters we calibrated are detailed in Table 2,
242 encompassing selections from deep convection, shallow convection, microphysics,
243 cloud fraction, and turbulence schemes. The selection of these parameters, along with
244  their default values and plausible ranges, is based on expert judgment as recommended
245 by the GAMIL3 developers and corresponds to the model configuration used in CMIP6
246 experiments. For visualization, all parameters are normalized based on their plausible
247  ranges, with O representing the minimum value of the range and 1 representing the
248  maximum one. Then two experiments are conducted to assess the impacts of varying

249  the number of parameters on the optimized results:

250 1. We selected the first 10 parameters (listed in the last column of Table 2) from
251 deep convection, shallow convection, microphysics, and cloud fraction
252 schemes. These parameters are identified as the most sensitive to the model's
253 performance based on Xie et al. (2023), and are therefore chosen for tuning.
254 2. An additional set of the next 10 parameters (also listed in the last column of
255 Table 2), related to microphysics and turbulence schemes, is included alongside
256 the initial 10 parameters. This approach aims to explore the impact of varying
257 the number of tuning parameters on the optimization results.

258 2.4 Covariance matrices for observations and model

259 Two covariance matrices need to be prepared before the optimization process
260  begins. The first matrix assesses the internal variability of the model system (C;). To
261 derive this, perturbed initial condition experiments are conducted. In this study, these
262  experiments involve running a total of 20 simulations, each with the three-dimensional
263 atmospheric temperature initial state perturbed by increments of +1e-20, while all other
264  settings remain identical to those used in the optimization. The second matrix estimates

265 the uncertainty of observations (C,), which is generally diagonal, assuming no

9
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266  correlation between different observations, and its values are derived from the
267  difference between two observation datasets. Specifically, data from ERAS5 and
268  National Center for Environmental Predictions/Department of Energy (DOE) 2
269  Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive the observation
270  error for variable T500, RH500, and MSLP. Precipitation data from CRU and Global
271 Precipitation Climatology Project (GPCP; Adler et al., 2003) are used for Land
272 Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface Temperature
273  (BEST; Muller et al., 2013) are used for Land Air Temperature (LAT). For the four
274  radiation variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on results
275  from Loeb et al. (2018), giving that a TOA imbalance range of 0-2 W/m=is typical for
276  single-year simulations (Mauritsen et al., 2012), we set the uncertainty of NETFLUX
277  at 2 W/m=Both matrices contribute to the total uncertainty in the variables relative to
278  the target observations. The total covariance matrix C is composed of the two
279  uncertainties introduced above, calculated as:

280 C=Cy+2C @)
281 During optimization, all observation values are standardized using the square root

282 of the diagonal elements of matrix C.

283 2.5 Evaluation methods

284 The cost function F(p) is used to measure the difference between the simulated
285  values S and the target observations O based on the parameters p. The cost function is
286  givenby:

287 F2(p) =~ (S = 0)'C™X(S - 0) (@),
288 where S is the simulated values; O is the target (observed) values; C is the
289  covariance matrix (as discussed above); N is the number of observations; (S — 0)7 is
290 the transpose of the difference between simulated and observed values; €~ is the
291 inverse of the covariance matrix; N is the number of tuning parameters. This cost
292 function quantifies how far the simulation is from the observations, considering the
293 uncertainty (through C) and correlation between different observations. The cost

294  function can be modified to include additional constraints, such as the net radiation flux

10
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295  at the TOA, along with global averages for surface air temperature and precipitation.
296 The Jacobian matrix J is the partial derivatives of the simulated results with respect
297  tothe parameters being optimized. For each simulated model output S; and parameter

298 pj, the Jacobian element J;; is given by:

95i(p)
299 == 3
]l] ap; ©))
300 This measures how much a small change in the parameter p; will affect the

301 simulated model outputs S;(p), revealing the impact of each parameter on the variables
302 and providing insights into their sensitivity. The Jacobians are normalized by the
303  parameter range and internal variability. Further details about the cost function and the
304  Jacobian are available in Tett et al. (2017).

305 In order to assess the extent to which the optimization has improved the
306 performance of the simulated values, the ratios (Z) of the difference between the

307  optimized and the default one to the standard error was adopted:

308 7 = |VDefault_VObservation|_|V0ptimized_V0bservation| (4)
Standard error

309 The Vobservation  Vbefaurr » @Nd Vopumizea FePresent the observation value,
310 simulated values using the default and optimized parameter sets, respectively. The
311  Standard error represents the observation error of the corresponding variables.
312 Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement

313 is anticipated, and performance may even worsen.

314 2.6 Optimization algorithm

315 The challenge of optimizing the model parameters numerically lies in the high
316 computational cost and potential noise associated with model evaluations, making
317  traditional derivative-based optimization methods impractical. There are several
318  optimization algorithms the system provides, such as (derivative-free) Gauss-Newton
319  variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS
320 algorithm as it appears to have better performance in model calibration (Oliver et al.,
321 2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett
322 etat, 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization

323  method designed to handle nonlinear least-squares problems without requiring
11
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324  derivative information. This algorithmis particularly useful in scenarios where function
325  evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS
326  constructs simplified linear regression models for the residuals, allowing it to make
327  progress with a minimal number of objective evaluations (Cartis et al., 2019).

328 The underlying algorithmic methodology for the DFO-LS algorithm is detailed in
329  Cartiset al. (2019). Here, we provide a brief overview of the algorithm, with a detailed
330  description of its parameter settings available in Supplementary S1. The optimization

331  problem is defined as minimizing the sum of the squared residuals
N ri()?
332 f(p): = =D ©)

333 where r(p) represents the differences between model outputs and observations;

334 in our case, 7(p):= C%(Si— 0;) . DFO-LS approximates the residuals without
335 derivatives by creating a linear regression model at the current iteration. DFO-LS
336 employs a trust region framework for stable optimization, which dynamically adjusts
337 the search region to balance exploration and exploitation. After constructing the
338  regression model, the algorithm solves the trust region subproblem to determine the
339  step size and direction for updating parameters. The actual versus predicted reduction
340 in the cost function is calculated to decide whether to accept or reject the step, with
341  adjustments made to the trust region size accordingly. The algorithm follows these steps:
342  initialization of parameters and trust region, model construction at each iteration,
343  solving the trust region subproblem, accepting or rejecting steps, updating the
344  interpolation set, and checking termination criteria. This structured approach ensures

345  robust and efficient optimization in minimizing model discrepancies.

346 3 Results
347 3.1 1-year AMIP simulations

348 3.1.1 GAMIL3 10-parameter case

349 The first experiment aims to optimize the ten sensitive parameters related to
350  convection and microphysics parameterization schemes (Table 2). In this experiment,

351  several parameters—including ke and captimt—were adjusted significantly from their

12
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352  default values, while cmftau and cO showed only minor adjustments (Fig. 2a). Fig. 2b
353  showsthe progression of the cost function over iterations for the 10- and 20-parameter
354  cases. Note that the cost function is divided by the number of observations, and a
355 smaller cost function indicates better simulation accuracy against observations. In the
356  10-parameter case, the system reaches its lowest cost function value of approximately
357 3.5 after 19 iterations, excluding the initial 10 runs. The cost function drops rapidly
358  fromabout 7.5 to 3.5 after the 10 initial runs, followed by a slower decline with some
359  fluctuations.

360 Fig. 3 shows the reduction or increase in simulation error in terms of the number
361  of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of
362 34 variables (approximately 71%) show Z values greater than zero, indicating improved
363  performance against the default case. Moreover, for 11 of these 24 variables, the
364  optimization reduced the error by more than 1 standard error, with 5 of these showing
365  improvements greater than 3. This is particularly evident in the RSR, MSLP, and the
366 tropical variables of T500. While most variables can be effectively tuned, several
367 variables, such as OLR, OLRC, and LAT, are worse than the default case. However,
368  except for LAT_NHX, the performance of these variables did not degrade by more than
369  one standard error. The blue dots in Fig. 4 represent the global area-weighted mean of
370  different variables for the tuning year (2011) in the 10-parameter case. Comparing to
371  the observational values, the optimization successfully improved most variables (9 out
372 0f 10), bringing them closer to the observations. Although some variables showed slight
373 deviations from the observations after optimization, nearly all remained within their
374  uncertainty range (except for OLRC), which is also reasonable in model tuning.

375 Since the cost function is a simple statistical indicator of the distance between the
376  area-weighted mean of the simulations and the observations, analyzing the spatial
377  distribution of the variables s crucial when evaluating the performance of the optimized
378  parameter sets. Fig. 5a presents Taylor diagrams for all tuning variables under three
379  parameter cases for the optimized year (2011). The results indicate that, compared to
380 the default case (green patterns), most variables' performance improved to varying

381  degrees in the 10-parameter case (blue patterns). For instance, while the standard
13
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382  deviation (SD) of the MSLP in the default result was much closer to the observations,
383  the 10-parameter case exhibited a larger pattern correlation (PC) coefficient and a
384  smaller root mean square deviation (RMSD). Some variables, including PRECIP,
385  NETFLUX, and T500, showed improvements in all three metrics (SD, PC, and RMSD).
386  However, other variables, such as OLR and RH500, showed slight deterioration after
387  optimization, as partially suggested in Fig. 3.

388 The "optimized" parameter set referred to in this study is the set where the cost
389  function reaches its lowest value. However, the robustness of this parameter set,
390 compared to others with similar cost function values, remains to be evaluated. To
391  address this, two additional experiments were conducted (Table S1 and Fig. S1),
392 selecting parameter sets with cost function values closest to the optimized one to
393 evaluate the potential impact of this choice. Table S1 shows that the parameter values
394  for the two sets (Experimentl and Experiment2), which have cost function values close
395  tothe minimum (Optimized), are quite similar, particularly for Experiment1, which has
396 the closest cost function value. The results from the 10-year AMIP simulations show
397  that, while most variables exhibit patterns similar to those of the Optimized set, notable
398  differences are observed in T2M and PRECIP. Overall, although differences in model
399  behavior arise from the choice of the optimized parameter set, these differences are not

400  substantial enough to significantly alter the model’s performance.

401 3.1.2 GAMIL3 20-parameter case

402 To investigate the impact of different numbers of tuning parameters on
403  optimization and the robustness of the tuning results, an additional 10 parameters
404  related to microphysics and turbulence schemes (Table 2) were included alongside the
405  existing 10 parameters. In the 20-parameter case, the initial perturbations for the
406 original 10 parameters were kept the same as in the 10-parameter case to ensure a fair
407  comparison. Comparing the optimal values of the 20-parameter case with the default
408  values shows that several parameters had large changes. Parameters such as cO_conv,
409 ke, capelmt, dzmin, Dcs, and ecr showed significant deviations from their default values

410  (Fig. 2a). Comparing the two sets of optimal parameters reveals both differences and
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411  consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the
412 same direction and display similar magnitudes, some parameters, like ke and cmftau,
413 are adjusted in the opposite direction. These differences may be attributed to the
414 compensating errors within in the model. When examining the tuning procedure (Fig.
415  2b), it is evident that the cost function dropped rapidly to a value very close to the
416 minimum after the initial 20 runs, similar to the 10-parameter case. The system required
417  atotal of 31 runs to reach the lowest cost function, just two more than the 10-parameter
418  case. This suggests that adding ten additional parameters increases the total number of
419  evaluations only marginally, indicating that when optimizing with DFOLS, there is no
420 need to be overly selective about parameter choice. The minimum cost achieved is
421 comparable to that of the 10-parameter case, with fewer additional runs required after
422  the initial phase to reach the minimum. This implies that including more tuning
423 parameters has a small impact on the total cost but enhances tuning efficiency. This
424 improvement can be attributed to the inclusion of additional parameters related to other
425  parameterization schemes, which enhances model tuning and yields more realistic
426 results compared to observations.

427 Comparing the Z values from the 20-parameter case to those from the 10-parameter
428  case (Fig. 3), we find that 25 out of 34 variables (approximately 74%) have Z values
429  greater than zero, slightly higher than in the 10-parameter case. Among these, 11
430  variables show improvements of more than 1 standard error, with 6 exhibiting
431 significant improvements of over 3 standard errors (notably in T500 and MSLP), which
432 isalso better than the 10-parameter case. While most variables in the 20-parameter case
433 demonstrate equal or greater improvements than in the 10-parameter case, some, like
434  OLR and OLRC, perform worse. The global area-weighted mean of all variables
435  (shown by red dots in Fig. 4) indicates that, except for OLR, RH500 and PRECIP,
436 variables improved compared to the default case. Although RH500 shows a greater
437  deviation from observation, it still falls within the uncertainty range. Significant
438 differences between the 20-parameter and 10-parameter cases are observed in the two
439  radiation variables (OLR and RSR) and the two surface-related variables (T2M and

440 PRECIP). These differences may partly result from certain parameters compensating
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441  for each other, which will be discussed later. The Taylor diagram in Fig. 5a shows that
442  most variables have improved compared to the default case. Relative to the 10-
443  parameter case, OLR, RSR, RSRC, MSLP, and PRECIP perform better in the 20-

444 parameter case. However, NETFLUX and T2M perform worse.

445 3.2 10-year AMIP simulations

446 Tuning and evaluating the model using only a one-year simulation may introduce
447  uncertainties due to the model's capacity to simulate phenomena with significant
448 interannual variability (Bonnet et al., 2024), such as the EI Nifo-Southern Oscillation
449  (ENSO). Therefore, a longer simulation with adjusted parameter settings using AMIP
450  drivers is necessary to assess the robustness of the tuning. Thus 10-year simulations
451  from 1 January 2005 to 31 December 2014 are conducted for the default and two
452 optimized parameter sets. Compared to the results from 2011, the 10-year average
453  AMIP results (Fig. 3b) show no significant differences between the two cases, as both
454 exhibit similar changes across most variables. For example, T500 and RSR show much
455 improvement in both cases, while OLR and OLRC perform worse. However, several
456  variables show differences between the two conditions. For instance, while the
457  standardized MSLP_TROPICSOCEAN_DGM improved by over 20 in the 2011
458  simulation with the 10-parameter case, it deviates from the observation by more than
459 10 standard errors in the 10-year simulation. Additionally, while the 20-parameter case
460  demonstrated improvement in the 2011 simulation, its performance declined in the 10-
461  year simulation.

462 The time series of the 10-year AMIP simulations in Fig. 4 show that, for the 10-
463  parameter case, 8 out of 10 variables are either much closer to the observations or very
464  similar (OLR, OLRC, and OSRC) to those in the default case. Only two variable,
465 RH500 and PRECIP, are slightly further from the observations but still within
466 uncertainty. The most striking finding is the improvement of the variables related to the
467  equilibrium of the climate system (RSR and NETFLUX). For the default case, due to
468 the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m?2. In

469  addition, T500 in the default case is too cold by almost 2K. After optimization, while
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470 OLR shows little change, RSR decreased by nearly 5 W/m?, considerably reducing the
471 model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the
472 results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case,
473 compared to the default, all variables—except RH500, OLR, T2M and PRECIP—show
474  either reduced biases or biases that are very close (OLRC and OSRC) to those in the
475  default case. This is less successful than the 10 parameter case, where 8 variables
476 exhibit reduced or similar bias relative to the default. However, T500 and the MSLP—
477  two variables that deviated significantly from the observations in the default and 10-
478  parameter cases—have been further tuned and now align more closely with observation.
479  Both the optimized cases show that OLR and PRECIP perform notably worse than in
480  the default case, with both variables being too low compared to the observations.

481 Similar to the Taylor diagram of the 1-year AMIP results, the 10-year AMIP
482 simulations (Fig. 5b) also demonstrate varying degrees of improvement across the three
483 metrics for most variables in both optimized cases. For instance, both cases improve all
484 three metrics for PRECIP, NETFLUX, and RSRC compared to the default case,
485 consistent with the 1-year AMIP results. While PRECIP, RSRC, T2M, and NETFLUX
486 in both optimized cases exhibit similar behave to the 1-year AMIP results, MSLP,
487  RH500, and RSR behave differently. Comparing this with Figs. 3 and 4, the results
488  suggest that this tuning yields only minor improvements to the spatial patterns of the
489  variables but primarily reduces their biases relative to observations. Examining zonal
490  averages (Fig. 6) reveals more specific details, particularly the differences between
491  tropical and extra-tropical regions. T500 and RSR have large tropical biases which
492 tuning considerably reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger
493  biases in extra-tropical, especially polar regions. These regional biases may come from
494 uncertainties in complex high-latitude processes, such as sea ice and snow cover
495  feedback mechanisms, which are not well represented in the model (Goosse et al., 2018).
496  Across the three cases, average performance is similar to that found earlier, with T500,
497  RH500, OLR, RSR, T2M, and PRECIP most affected by tuning and most sensitive to
498  parameter changes, while OLRC, RSRC, and MSLP are little impacted by optimizing.

499  Additionally, while changing physical parameters generally affects the entire
17
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500 atmosphere, some variables respond differently in specific regions. For example,
501  RH500 shows a more pronounced response in tropical regions, while land T2M

502  responds more noticeably in the extra-tropics.

503 3.3 Atmospheric model evaluation

504 What parameters and processes would affect these model tuning behaviors?
505  Analyzing the Jacobian results derived from the perturbation parameter simulations can
506  provide insights into how and to what extent various parameters impact the variables.
507  As shown in Fig. 7, parameters such as c0_conv, cmftau, rherit, rhminl, rhminh, and
508 Dcs significantly affect simulated variables, particularly NETFLUX,
509  Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and
510 TEMP@500. Notably, most of these parameters have also been adjusted significantly
511 in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH
512 threshold for triggering deep convection and is a parameter with a strong influence on
513  RH. Fig. 2a shows that rhcrit decreased from the default case, whose value is 0.85, to
514  the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82,
515  respectively. A lower rhcrit significantly promotes deep convection by reducing the
516  triggering threshold, which enhances water vapor transport from the lower to the mid
517  and upper atmospheric layers. This could lead to a drop in RH below troposphere and
518  arise above it (Fig. 8a). This effect is especially pronounced in the tropics, where deep
519  convection dominates vertical moisture transport (Fig. 4b, 6b, and 8b). Additionally,
520 low RH below troposphere can limit moisture availability, weakening updrafts and
521 reducing overall precipitation (blue line in Fig. 4h). This negative impact on
522  precipitation outweighs the positive effect of increased precipitation efficiency
523 (c0_conv; Fig. 7).

524 A deficit in low-level cloud fraction is evident in Fig. 8c-8d, primary due to the
525 increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-
526  parameter cases, respectively. Although the 10-parameter case has a higher threshold
527  forlow level cloud formation than the 20-parameter case, Fig. 8c-8d shows the opposite

528  result, which can be explained by the compensatory effects of other parameters.
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529  Optimized results indicate that cmftau, another key parameter, has a lower value in the
530  20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case
531  (~4931). This decrease in cmftau likely strengthens shallow convection while
532 weakening deep convection, reducing upward water transport and RH throughout the
533 troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018).
534  Consequently, the lower low-level cloud fraction in the 20-parameter case, compared
535  to the 10-parameter case, reflects the compensatory effects of these key parameters,
536  with the influence of the reduced cmftau outweighing that of rhminl. High-level clouds
537  trap heat by limiting radiation emission into space, thereby warming the atmosphere,
538 while low-level clouds reflect sunlight, producing a cooling effect. Therefore, a
539 reduction in low-level clouds allows more shortwave radiation to penetrate the lower
540  atmosphere, reducing outgoing shortwave radiation to space (blue lines in Fig. 4e and
541  6e) and warming the region, including near the surface (blue lines in Fig. 4g and 6a;
542 Fig. 8e).

543 Comparing the 20-parameter case to the default case, the tuning results show that
544  one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has
545  been significantly increased. This adjustment suggests that a higher Dcs leads to
546  increased RSR and T2M, while also resulting in lower OLR and PRECIP (Fig. 7).
547  Specifically, clouds with higher ice content trap more OLR from the Earth's surface,
548  potentially amplifying the greenhouse effect by retaining more infrared radiation (red
549  lines in Fig. 5¢c and 7c¢). This results in a warming effect, particularly at lower
550 atmospheric levels and even near the surface, especially during nighttime or in polar
551 regions (red lines in Fig. 4g, 6a, and 6g; Fig. 8f). Additionally, raising the
552 autoconversion threshold from ice to snow is expected to allow more ice to remain in
553  the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 4h).
554  These effects align with the results shown in Fig. 7, with the exception of RSR.
555  Theoretically, increasing Dcs (which delays the conversion from ice to snow) could
556 increase ice mass, raising cloud optical thickness and enhancing the cloud's ability to
557  reflect incoming shortwave radiation. However, this expectation contrasts with the

558  findings in Figs. 4e and 6e, which show a slightly lower RSR in the 20-parameter case
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559  compared to the default case. This discrepancy can be attributed to compensatory effect
560 among different parameters. As shown in Fig. 7, changes to the parameters c0_chg,
s61  rhminl, and cmftau in the 20-parameter case negatively impact RSR, potentially
562  offsetting the positive effect of Dcs and resulting in an RSR slightly lower than that of

563  the default case.

s64 3.4 Coupled model results

565 In order to evaluate the performance of different parameter sets in long-term
566 climate simulations, it is essential to apply them to a coupled model. Here, the GAMIL3
567  atmospheric model, coupled with land model (CLM2; Bonan et al., 2002) and ocean
568  and sea ice model (LICOM2.0; Liu et al., 2013), was used to assess whether tuning
569  atmospheric parameters leads to a reasonable coupled model.

570 In the default case the model starts with a large negative NETFLUX of around -4
571 W/m3ZFig. 9a), consistent with the results in Fig. 4j, indicating that the climate system
572 is losing energy at this stage. As the model integrates, the NETFLUX increases,
573  approaching zero after approximately five model years, achieving a stable energy
574  budget for the remaining simulation period. This change in NETFLUX is found to be
575  almost equally driven by a ~2 W/m=eduction in both RSR (Fig. 9b) and OLR (Fig. 9c)
576  simultaneously. However, despite these radiation variables, particularly the NETFLUX,
577  approaching a stable state, the ocean continues to lose energy rapidly (Fig. 9d) with no
578  signs of stabilization by the end of the simulation. For the T2M, the tuning target is 13.6
579  £0.5<T (Williamson et al., 2013), which differs significantly from the model’s default
580  case results (Fig. 9e). Consequently, although the NETFLUX appears to reach a stable
581  state, the system continues to lose energy and remains far from the tuning target in the
582  default case. Furthermore, the piControl simulation for the default case is notably
583  fragile and prone to crashes due to unstable iterations, particularly in contrast to the two
584  optimized cases. This instability poses a critical challenge, especially for long-term
585  climate simulations.

586 For both optimized cases, the NETFLUX (Fig. 9a) remains stable throughout the

587  30-year simulations, with values of about 2 W/m=Although slightly further from the
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588 target of 0 W/m=they are still within the model spread range of -3 to 4 W/m3Mauritsen
589 et al., 2012). Specifically, the change in NETFLUX in the 10-parameter case is
590  primarily driven by a decrease in RSR (Fig. 9b), while in the 20-parameter case, it is
591  mostly due to a reduction in OLR (Fig. 9¢), consistent with the results in Figs. 4c and
592  4e. Both the volume-averaged ocean temperature (Fig. 9d) and the T2M (Fig. 9e)
593  exhibit a slight initial adjustment during the first five years, followed by stabilization.
594 Results from the simulated SST anomalies in Fig. 10a—10c for the default case
595 show strong cold anomalies relative to observations, with maximum deviations
596  exceeding -4 <C over the North of Pacific and Atlantic. The simulated SST anomalies
597 inFig. 10d-10i indicate that both optimized cases show substantial improvement over
598  the default case in terms of SST patterns and deviations, although some negative
599  deviationsinthe northern Pacific and Atlantic persist—a common issue for most GCMs
600 (Zhang and Zhao, 2015; Wang et al., 2018). Previous findings suggest that the two
601  optimized cases exhibit cloud fraction significantly different from the default case, with
602  simulated radiation improvements primarily observed in shortwave and longwave
603  radiation in each case, respectively. Therefore, it is necessary to investigate the
604  shortwave and longwave cloud forcing in these two cases (Fig. 11). The results for both
605  cases show that the combined effect of these two cloud forcings acts as a significant
606  positive influence globally, contributing to the ocean surface flux and increasing ocean
607  temperature. Specifically, the shortwave cloud forcing has a greater weight than the
608  longwave in the 10-parameter case, mainly due to the parameters rhcrit and rhminl, as
609  mentioned earlier. In contrast, the longwave cloud forcing outweighs the shortwave in
610 the 20-parameter case, primarily due to the effects of Dcs. While the shortwave cloud
611  forcing exerts a negative effect over the tropical ocean, the longwave cloud forcing
612  provides a significant compensatory effect. A similar behavior is observed in the 20-
613  parameter case.

614 Overall, the two optimized cases result in a more realistic coupled model, not only
615  maintaining the model's energy balance and reducing climate drift, but also improving
616  the simulated ocean state, such as SST distribution. Although the two optimized cases

617  exhibit different behaviors—with the 10-parameter case showing lower RSR and the
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618  20-parameter case showing lower OLR—tuning has allowed them to achieve stability

619  through distinct mechanisms.

620 3.5 Sensitivity of initial parameters

621 As stated in the previous section, the initial parameter values used for tuning are
622  primarily informed by expert judgment, which has been recognized as crucial and
623  necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al.,
624  2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter
625  choices influence tuning results, we conducted three additional sensitivity experiments
626  with randomly selected initial parameter values (Table S2), focusing on the first 10
627  parameters.

628 The optimized parameter values in these randomized experiments (represented by
629  starsin Fig. 2a) exhibit significantly larger spreads compared to the default and original
630  optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and
631  ¢0, which nearly span their entire plausible ranges. This finding indicates that the model
632 could reach entirely different optimized states depending on initial values. During the
633  tuning process, the cost function (Fig. 2c) for these cases exhibited a rapid decrease,
634  stabilizing at similar values across all three experiments after approximately 10
635 iterations, with an additional 10-20 runs required to reach the optimized state. This
636  pattern further demonstrates the efficiency and robustness of the tuning algorithm.

637 Given the substantial differences in the optimized parameters, it is worthwhile to
638  further investigate their Jacobian differences to gain a more comprehensive
639  understanding of each parameter's impact on the variables. Fig. 12 shows the Jacobian
640  ranges for four cases (including the original optimized case), with Jacobian calculated
641  around the optimized parameter set for each case. The results generally demonstrate
642  consistency with the parameter sensitivities shown in Fig. 7. Variables sensitive to most
643  parameters exhibit substantial variability, while highly sensitive parameters, such as
644  c0_conv, cmftau, rherit, rhminl, and rhminh, introduce considerable uncertainty across
645  multiple variables, depending on their initial values and interactions with other

646  parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter
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647  changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by
648  most parameters, also aligning with the findings in Fig. 7.

649 The performance of these three optimized parameter sets in the 10-year AMIP
650  simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with
651  observations across all cases, primarily due to the additional constraint incorporated
652 into the tuning algorithm. However, notable differences across different cases remain,
653  with each case following a distinct optimization pathway, though most results still fall
654  within uncertainty ranges. For example, the third experiment achieved the closest
655  alignment for T500 but at the expense of T2M and PRECIP compared to other cases,
656  highlighting inherent trade-offs and model structural errors that hinder simultaneous
657  optimization of these variables. As seen in prior findings, RSRC and MSLP proved
658  difficult to tune, while OLRC was adjustable but deviated in the opposite direction from
659  observations, accompanied by a discrepancy in RH500 alignment.

660 Overall, these sensitivity experiments confirm the efficiency of the tuning
661 algorithm and underscore the importance of expert judgment in selecting initial
662  parameter values. Expert selection not only ensures satisfactory model performance at
663  the start of tuning but also enhances tuning effectiveness, even though structural errors

664  inthe model remain.

665 4 Discussion

666 In this study, we developed an objective and automatic parameter tuning
667  framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method
668  to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The
669  results highlight the effectiveness of this method in tuning atmospheric parameters,
670  particularly those initially set based on expert judgment, as demonstrated by notable
671  improvements in model accuracy across multiple variables and enhanced climate
672  system stability. However, several aspects of this work require further clarification.

673 Firstly, as noted earlier, the ‘optimized' parameter set in this study refers to the set
674  at which the cost function achieves its minimum value. However, results in Figs. 2b

675 and 2c indicate that, for each case, there are several cost function values close to this
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676  minimum. We have shown that these differences are not substantial enough to
677  significantly alter the model’s performance. However, this finding suggests that
678  parameter ranges associated with similar cost function values may provide valuable
679  insights into the acceptable parameter space for model optimization. We acknowledge
680 that focusing exclusively on minimizing cost function values to obtain a single
681  optimized parameter set during tuning can increase the risk of overfitting and
682  compensating errors, which is a common challenge in model tuning. Although the
683  results of this study show no clear signs of overfitting—both the 10- and 20-parameter
684  optimized cases, starting from expert-judged initial values, ultimately produce
685  reasonable coupled model results—it remains important to carefully consider potential
686  overfitting impacts.

687 Secondly, this study shows that tuning either different numbers of parameters or
688  varying initial parameter values can yield diverse optimized results, each improving
689  certain aspects of the model. This suggests that although tuning can lower the cost
690  function to comparable levels, the final tuned state of the model is not necessarily
691  unique—an common issue encountered in model tuning (Hakkarainen et al., 2013;
692  Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors
693  within the model and uncertainties in the observational data. On one hand, introducing
694  constraints, such as assigning greater weight in key variables during tuning, could help
695  achieve more realistic results. For instance, applying constraints on NETFLUX during
696  tuning ensures consistently good performance across all the cases in the 10-year AMIP
697  simulations. In the 20-parameter case, adding constraints on OLR and RSR would
698  maintain their performance while also improving T500 and MSLP. On the other hand,
699  while different parameter sets satisfied the lowest cost function in different ways, it is
700 important to remember that the cost function is simply a statistical measure of the
701 distance between the area-weighted mean of the simulations and observations.
702 Therefore, a comprehensive evaluation is essential to identify the most suitable
703 parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and
704  aligning statistical indicators with observations, it is crucial to evaluate the spatial

705  distributions of variables, the equilibrium state of the climate system in coupled models,
24



https://doi.org/10.5194/egusphere-2024-3770
Preprint. Discussion started: 10 February 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

706  and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These
707  aspects should be further evaluated to ensure robust model performance.

708 Some limitations remain. For instance, although the coupled model simulations
709  show improvements in energy stability and reduced climate drift, certain regional biases
710 in SST persist. These biases suggest that while tuning enhances model performance,
711  there may be systematic issues within the model’s physics that cannot be fully
712 addressed through parameter tuning alone. Resolving these regional discrepancies may
713 require further refinement of model physics or additional modifications to the tuning
714 framework. Additionally, the optimized cases show a relatively large energy imbalance
715 at the TOA. Although still within model uncertainty, this issue warrants further
716  investigation. One possible cause could be the non-conservation of energy in the
717  atmospheric model. Preliminary results indicate that the difference between the TOA
718  and Earth’s surface energy imbalances in the 1-year AMIP tuning is approximately 1.4
719  W/m?, highlighting one of the model’s structural errors. This suggests that even in the
720  optimized cases, the atmospheric model may be consuming excess energy, a bias that
721 could carry over to the coupled model. Consequently, one of the lessons from this study
722 is that when tuning the model, attention should also be paid to structural errors,

723 particularly those related to energy conservation.

724 5 Conclusions

725 The study focuses on optimizing an atmospheric model by simultaneously
726  perturbing and tuning multiple parameters associated with convection, microphysics,
727  turbulence, and other physical schemes. Two primary experiments were conducted: one
728 involving the adjustment of 10 parameters, and the other with 20 parameters. In the 10-
729  parameter tuning, significant changes were made to several sensitive parameters,
730  resulting in a notable reduction in the cost function and improved model accuracy. Out
731 of 34 variables, 24 showed improved performance, although some remained
732 challenging to optimize due to structure errors in the model. In the 20-parameter tuning,
733 additional parameters related to microphysics and turbulence were introduced, resulting

734 inslight performance improvements for 25 out 34 variables. However, certain variables
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735  experienced a decline in performance. While the 20-parameter case achieved a lower
736 cost function more quickly than the 10-parameter case, the increased complexity
737  required careful management of parameter interactions and compensatory effects.

738 To evaluate the robustness of the tuning results, we conducted 10-year AMIP
739 simulations. The findings showed that the optimized parameter sets maintained their
740  performance improvements over extended simulation periods, though variables like
741 MSLP exhibited variability depending on the specific period analyzed. Time series
742 analyses indicated that the optimized models more accurately captured the equilibrium
743 of the climate system, particularly by improving the balance of outgoing shortwave and
744  longwave radiation and stabilizing surface temperatures. However, some variables
745  remained challenging to optimize consistently across different regions and timescales.
746 The optimized parameter sets were further tested in a coupled model setup that
747  integrated land, ocean, and sea ice components. The results demonstrated improved
748  energy budget stability, reducing climate drift and leading to more realistic SST
749  simulations. Both the 10- and 20-parameter optimizations yielded more reasonable
750  behavior in the coupled model, though persistent regional biases, particularly in the
751 northern Pacific and Atlantic, remained.

752 Three additional experiments, in which the initial values of the first 10 parameters
753 were randomly selected, were conducted to evaluate itsimpact on the optimized results.
754 The results further confirm the efficiency and robustness of the algorithm, as it rapidly
755  minimizes the cost function after the first 10 runs, although the optimized parameter
756 values and their performance across different cases show significant variation. Overall,
757  these findings emphasize the importance of expert judgment in parameter selection and
758 itsrole in enhancing model performance.

759 In conclusion, the proposed DFO-LS-based tuning framework presents a robust
760 and efficient approach for enhancing climate model performance. This work was
761  primarily conducted by a researcher over 12 months, highlighting the efficiency of the
762 approach in terms of human resources. The adaptability of this methodology to other
763  GCMs holds great potential for accelerating model development and improving the

764 accuracy and reliability of future climate projections. By integrating this framework
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765 into broader model tuning efforts, the climate modeling community can make
766 significant strides in addressing parametric uncertainties and advancing the precision

767  of climate forecasts.
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1041  Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter
1042 are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—
1043  observational error and model internal variation—help adjust parameter values in the objective
1044  function. The DFO-LS algorithm optimizes the parameters, and the post-processing module

1045  analyzes sensitivity, cost function results, and generates visualizations.

1046  Table 1: Observations used for model evaluation, along with their target values and associated

1047 uncertainties .

Variables
! Description Classifications Target  Uncertainty
name
MSLP_NHX_DGM  277.52 22.85
Mean sea level - -
MSLP MSLP_TROPICSLAND_DGM 35.42 13.69
pressure (hPa); - -
MSLP_TROPICSOCEAN_DGM 187.34 1.04
TEMP@500_NHX  251.42 0.12
T500 Temperature at TEMP@500_SHX  249.38 0.56
500hPa (K) TEMP@500_TROPICSLAND 266.27 0.27
TEMP@500_TROPICSOCEAN 266.60 0.23
) RH@500_NHX 52.75 7.04
Relative RH@500 SHX  51.05 479
RS0 numidity " RH@500_TROPICSLAND 40.36 6.67
500hPa (%) @500_ ' '
RH@500_TROPICSOCEAN 32.57 3.01
Net heat flux at
top of
NETFLUX netflux. GLOBAL 0.98 2.0
atmosphere -
(W/m?)
Outgoing long OLR_NHX  223.57-
wave flux at to|
OLR f ) p OLR_SHX  216.86 25
of  atmosphere OLR_TROPICSLAND  255.09
(W/m?)
OLR_TROPICSOCEAN 261.35
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1048

1049
1050

EGUsphere\

OLRC

RSR

RSRC

PRECIP

T2M

Outgoing long
wave clearsky
flux at top of
atmosphere
(W/m?)
Outgoing
shortwave flux
at top of
atmosphere
(W/m?)
Outgoing
shortwave
clearsky flux at
top of
atmosphere

(W/m?)

Total
precipitation
(m/s)

Temperature at
2 meters (K)

OLRC_NHX
OLRC_SHX
OLRC_TROPICSLAND
OLRC_TROPICSOCEAN
RSR_NHX

RSR_SHX
RSR_TROPICSLAND
RSR_TROPICSOCEAN

RSRC_NHX

RSRC_SHX
RSRC_TROPICSLAND
RSRC_TROPICSOCEAN
Lprecip_NHX
Lprecip_SHX
Lprecip_TROPICSLAND
LAT_NHX

LAT_SHX
LAT_TROPICSLAND

247.71
243.59
288.64
290.21
100.91
107.55
116.04

86.92

57.98

53.65

75.67

42.42

1.60e-8
1.42e-8
4.47e-8
275.72-
280.08
297.10

4.5

25

5.0

0.35e-9
4.29e-9
0.37e-9
0.06
0.49
0.31

Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible

ranges.
o Default
Parameters Description Range
Values
c0_conv Precipitation efficiency for deep convection 1l.e-4-5.e-3 l.e-3
rherit Threshold value for RH for deep convection 0.65-0.95 0.85
captimt threshold value for cape for deep convection 20-200 70
alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2
Evaporation efficiency of deep convection
ke L 1.e-6-1.5e-5 9.e-6
precipitation
c0 rain water autoconversion coefficient 3.e-5-2.e4 5.e-5
cmftau characteristic adjustment time scale 1800-14400 4800
rhminl Threshold RH for low stable clouds 0.8-0.99 0.95
rhminh Threshold RH for high stable clouds 0.4-0.99 0.5
Most stable lapse rate below 750hPa, stability
dthdpmn . -0.15- -0.05 -0.08
trigger for stratus clouds
shl Parameters for shallow convection cloud fraction 0.0-1.0 0.04
sh2 — 10-1000 500
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EGUsphere\

dpl Parameters for deep convection cloud fraction 0.0-1.0 0.1
dp2 — 10-1000 500
cerit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5
dzmin minimum cloud depth to precipitate 0.0-100.0 0.0
Dcs Autoconversion size threshold for ice to snow l.e-5-1.e-3 2.e-4
ecr collection efficiency cloud droplets/rain 0.5-2.0 1.0
ai Fall speed parameter for stratiform cloud ice 500-1500 700
Inverse relative variance of subgrid scale cloud
gevar g 0.1-2.0 1.0
water
1051
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1053  Figure 2. Normalized values of tuning parameters for default and optimized cases (a), along with
1054  changes in the cost function value over iterations for the 10- and 20-parameter cases (b) and three
1055  sensitivity experiments (c).
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1056
1057  Figure 3. Z values for the 1-year (a) and 10-year (b) AMIP simulations. Solid and hollow dots

1058  represent tuning with 10 and 20 parameters, respectively. Blue dots indicate improved performance,
1059  while red dots show deterioration. The black dashed line at Z = 0 separates improved from non-
1060  improved variables.
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Figure 4. 1-year AMIP results (dots) and time series (lines) for three cases for: T500 (a), RH500
(b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), PRECIP (h), MSLP (i) and NETFLUX (j).
The cases include the default case (green lines and dots), 10-parameter case (blue lines and dots),
and 20-parameter case (red lines and dots). The black lines and shadings represent the observations
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Figure 5. Taylor-diagram showing all variables for three cases in 2011 (a) and the 10-year AMIP
simulations (b). Shown are default case (green), 10-parameter case (blue), and 20-parameter case
(red).
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Figure 6. Meridional distributions of the annual mean bias between three cases and observations
for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), PRECIP (h) and MSLP
(i) from the 10-year AMIP simulations. Shown are default case (green), 10-parameter case (blue),
and 20-parameter case (red).
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1078  Figure 7. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance
1079  metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black
1080  parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case.
1081  Redand blue indicate positive and negative effects, respectively, with darker shades showing greater
1082  impact.
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1084  Figure 8. Latitude-pressure anomaly distributions relative to the default case for relative humidity

1085  (a, b), cloud fraction (c, d), and temperature (e, f) from 10-year AMIP simulations: 10-parameter
1086  case (a, ¢, €) and 20-parameter case (b, d, f).
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1088  Figure 9. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c)
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1090  parameter (blue), and 20-parameter cases (red) cases.
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1092  Figure 10. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003)
1093  fromthe last 15 years of piControl simulations for the default case (a, b, ¢) and two optimized
1094  cases (d-i).
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1096  Figure 11. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between
1097  the two optimized cases and the default case.
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1098
1099  Figure 12. Similar as Fig. 7, but showing the range of Jacobians calculated from the
1100  parameter set across four cases: the original optimized case and three sensitivity cases.
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