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Abstract. Parameterization in climate models often involves parameters that are 16 

poorly constrained by observations or theoretical understanding alone. Manual tuning 17 

by experts can be time-consuming, subjective, and prone to underestimating 18 

uncertainties. Automated tuning methods offer a promising alternative, enabling faster, 19 

objective improvements in model performance and better uncertainty quantification. 20 

This study presents an automated parameter-tuning framework that employs a 21 

derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune 22 

multiple convection-related and microphysics parameters. The framework explicitly 23 

accounts for observational and initial condition uncertainties (internal variability) to 24 

calibrate a 1-degree resolution atmospheric model (GAMIL3). Two experiments, 25 

adjusting 10 and 20 parameters, were conducted alongside three sensitivity experiments 26 

that varied initial parameter values for a 10-parameter case. Both of the first two 27 

experiments showed a rapid decrease in the cost function, with the 10-parameter 28 

optimization significantly improving model accuracy in 24 out of 34 variables. 29 

Expanding to 20 parameters further enhanced accuracy, with improvement in 25 of 34 30 
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variables, though some structural model errors emerged. Ten-year AMIP simulations 31 

validated the robustness and stability of the tuning results, showing that the 32 

improvements persisted over extended simulations. Additionally, evaluations of the 33 

coupled model with optimized parameters showed--compare to the default parameter 34 

setting--reduced climate drift, a more stable climate system, and more realistic sea 35 

surface temperatures, despite a slight energy imbalance and some regional biases. The 36 

sensitivity experiments underscored the efficiency of the tuning algorithm and highlight 37 

the importance of expert judgment in selecting initial parameter values. This tuning 38 

framework is broadly applicable to other general circulation models (GCMs), 39 

supporting comprehensive parameter tuning and advancing model development. 40 

1 Introduction 41 

Assessing current and future climate change risks to natural and human systems 42 

heavily relies on numerical simulations using advanced climate or Earth System 43 

Models (ESMs). In recent decades, significant progress has been made in developing 44 

the major components of the Earth system (i.e., atmosphere, ocean, land, human 45 

systems, etc.) and in the coupling techniques required to form fully integrated ESMs. 46 

However, many unresolved issues remain in the development of ESMs, including but 47 

not limited to simulation bias in air-sea interactions (Ham et al., 2014; Bellucci et al., 48 

2021; Wei et al., 2021; Meng et al., 2022), the double Intertropical Convergence Zone 49 

(ITCZ) problem (Tian et al., 2020), and the coupling of biogeochemical cycles such as 50 

the carbon cycle, nutrient cycles with the physical climate system (Erickson et al., 2008). 51 

The complexity of the Earth's climate system and the inherent uncertainties in climate 52 

models present significant challenges in achieving reliable projections. One of the key 53 

sources of uncertainty arises from the representation of unresolved physical processes 54 

through parameterizations (Gentine et al., 2021; Jebeile et al., 2023).  55 

Parameterizations are crucial when accounting for processes that occur at 56 

unresolved scales or are missing from the model formulation. Parameterizations 57 

provide simplified representations of sub-grid processes like cloud convection and 58 

turbulence, which cannot be explicitly resolved at scales smaller than the model's grid 59 
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resolution due to computational constraints. For example, processes such as 60 

atmospheric radiative transfer and cloud microphysics are too complex to be 61 

represented in full detail within ESMs, so parameterizations offer simplified 62 

approximations to capture their essential effects. Parameterization often involves 63 

parameters whose values are frequently not well-constrained by either observations or 64 

theory alone (Ludovic, 2021; Jeliele et al., 2023), which can directly affect the 65 

performance of the model simulation. Consequently, parameter tuning, the process of 66 

estimating these uncertain parameters to minimize the discrepancy between specific 67 

observations and model results, becomes a critical step in climate model development 68 

(Hourdin et al., 2017).  69 

Appropriate parameter tuning can improve the accuracy and skill of climate model 70 

outputs by optimizing parameter values to better match observations or high-resolution 71 

simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For 72 

example, parameter tuning allows adjusting the values of parameters in 73 

parameterizations that approximate these unresolved processes like cloud convection, 74 

turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al., 75 

2023). By tuning parameter values during the model calibration process, modelers can 76 

partly compensate for known structural errors, deficiencies, or missing processes in the 77 

underlying model formulation itself (Williamson et al., 2015; Hourdin et al., 2017; Tett 78 

et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible 79 

parameter values through tuning allows quantifying parametric uncertainties and their 80 

impacts on model outputs and projections (Jacksonet al., 2004; Neelin et al, 2010; 81 

Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016). 82 

Broadly speaking, parameter tuning methods aim to quickly optimize a cost 83 

function that measures the distance between model simulations and a small collection 84 

of observations. Applications of such methods in climate science include studies by 85 

Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et 86 

al. (2015), and Tett et al. (2017). For instance, in the experiments conducted by Tett et 87 

al. (2017) with an atmospheric GCM, 7 and 14 parameters were estimated using 88 

variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize the difference 89 
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between simulated and observed large-scale, multi-year averaged net radiative fluxes. 90 

These optimized parameters were then applied in a coupled GCM. Zhang et al. (2015) 91 

utilized an improved downhill simplex method, focusing on seven parameters, and 92 

reported successful optimization of an atmospheric model. This improved method 93 

overcomes the limitations of the traditional downhill simplex method and offers better 94 

computational efficiency compared to evolutionary optimization algorithms.  95 

Traditionally, uncertain parameters have been tuned manually through extensive 96 

comparisons of model simulations with available observations. This approach is 97 

subjective, labor-intensive, computationally expensive, and can lead to under-98 

exploration of the parameter space, potentially underestimating uncertainties and 99 

leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin 100 

et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter 101 

calibration techniques have advanced rapidly due to their efficiency, effectiveness, and 102 

wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013; 103 

Zhang et al., 2015). Bardenet et al. (2013) combined surrogate-based ranking and 104 

optimization techniques for surrogate-based collaborative tuning, proposing a generic 105 

method to incorporate knowledge from previous experiments. This approach can 106 

effectively improve upon manual hyperparameter tuning. Zhang et al. (2015) proposed 107 

a "three-step" methodology for parameters tuning. Before the final step of applying the 108 

downhill simplex method, they introduced two preliminary steps: determining the 109 

model's sensitivity to the parameters and selecting the optimum initial values for those 110 

sensitive parameters. By following this process, they were able to automatically and 111 

effectively obtain the optimal combination of key parameters in cloud and convective 112 

parameterizations.  113 

However, previous studies were either semi-automatic or lacked sufficient 114 

observational constraints, such as the net flux at the top of the atmosphere (TOA). 115 

Moreover, earlier objective tuning methods that relied on cost functions often 116 

overlooked key sources of uncertainty, including observational uncertainty and the 117 

internal variability of variables. To address these limitations, we developed a new 118 

objective and automatic parameter tuning framework that is more efficient for tuning 119 
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parameters in GCMs. Compared to previous automatic tuning efforts, this system 120 

operates entirely within a Python environment and includes several new optimization 121 

algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al., 122 

2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker, 123 

2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al., 124 

2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to 125 

nonlinear least-squares minimization problems without requiring derivatives of the 126 

objective function, and has been numerically tested to be particularly effective in 127 

finding global optimization solutions. Our framework supports multiple observations 128 

and constraints as optimization targets. Additionally, it considers the internal variability 129 

of GCMs and integrates sensitivity analysis with the optimization process, making it a 130 

more flexible and efficient model tuning system overall. Moreover, systematically and 131 

simultaneously perturbing multiple parameters addresses the concern that optimizing a 132 

single objective may lead to suboptimal solutions for other objectives and might 133 

overlook the global optimum for the overall tuning metric (Qian et al., 2015; 134 

Williamson et al., 2015). We have designed and implemented an automatic workflow 135 

to streamline the calibration process, enhancing efficiency. This method and workflow 136 

are readily applicable to GCMs, facilitating accelerated model development processes. 137 

Using this framework, we tune the latest released version 3 of the Grid-Point 138 

Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for 139 

Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of 140 

Atmospheric Physics (IAP), named GAMIL3. The newly released GAMIL3 has a 141 

higher resolution (~1°) compared to the previous version 2 (~2.8°), and several 142 

parameterization schemes related to cloud processes and microphysics have been 143 

updated but not well-tuned. This study demonstrates how the tuning framework can 144 

automatically and effectively optimize model parameters to achieve better performance 145 

against observations. 146 

Our objectives are as follows: 147 

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric 148 

model; 149 
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2. To investigate the impact of various parameters and initial values on the tuning 150 

results; 151 

3. To evaluate the performance of the optimized parameters in decadal simulations 152 

and long-term coupled model runs. 153 

The paper is organized as follows: Section 2 introduces the proposed automatic 154 

framework, the tuning model and experiments, observational data and metrics, and the 155 

tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to 156 

long-tern simulations, including coupled model runs. This is followed by a discussion 157 

in Section 4 and a conclusion in Section 5. 158 

2 Methods 159 

2.1 The automatic tuning framework 160 

Here we present the automatic tuning framework (Fig. 1) we have developed, 161 

which includes, but is not limited to, functions such as model compiling, (re)submitting, 162 

parameter tuning, results evaluation, and diagnostics. Specifically, the framework 163 

comprises three main processing modules that collectively control the entire system: 164 

the model preprocessing module (the lower left panel in Fig. 1), the model optimizing 165 

module (the middle panel in Fig. 1), and the model post-processing module (the right 166 

panel in Fig. 1).  167 

The preprocessing module prepares various input data for the optimization process, 168 

with particular focus on model internal variations and observational uncertainties (Tett 169 

et al., 2017), which will be further discussed in a later section. The optimizing module, 170 

which uses the DFO-LS optimization method, is the core component of this tuning 171 

system and is primarily responsible for updating model parameters and running 172 

simulations. In the initialization of DFO-LS, the module defines the initial parameters, 173 

the initial trust region (which is an algorithm parameter) for these parameters, and any 174 

parameter constraints. In this step, the system first automatically conducts perturbed 175 

parameter experiments for each parameter individually, resulting in N simulations when 176 

N parameters are expected to be tuned. The results from this step can be used to assess 177 

the sensitivity of the variables to variations in different parameters. Next, the iteration 178 
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process of DFO-LS begins, involving several steps essential for determining the 179 

optimal parameter values. In each iteration, the algorithm refines the parameter 180 

estimates and continues until the termination criteria are met, resulting in optimized 181 

parameters. The post-processing module receives the output from the optimization 182 

module, including the optimized parameters, the sensitivity of variables to the 183 

parameters, and the cost function values from different iterations, and further analyzes 184 

these results based on user requirements. 185 

2.2 Model description and experiments 186 

In this study, we utilize the latest version 3 of the Grid-point Atmospheric Model 187 

developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences, 188 

Beijing, China (IAP LASG GAMIL3). This version represents a significant 189 

advancement over its predecessor, GAMIL2 (Li et al., 2013), by introducing a hybrid 190 

2D decomposition that enhances parallel scalability, replacing the one-dimensional 191 

parallel decomposition in the meridional direction used in GAMIL2 (Liu et al., 2014). 192 

GAMIL3 features a grid structure of 360 × 160 longitude-latitude cells, providing a 193 

horizontal resolution of approximately 1°, with 26 vertical σ-layers (pressure 194 

normalized by surface pressure) extending to the model top at 2.19 hPa. Significant 195 

updates in GAMIL3 include improvements in the two-step shape-preserving advection 196 

scheme (TSPAS; Yu, 1994) compared to GAMIL2 (Li et al., 2013), the inclusion of a 197 

convective momentum transport scheme (Wu et al., 2007), updates to the planetary 198 

boundary layer scheme, and enhancements in the stratocumulus cloud-fraction scheme 199 

based on turbulence kinetic energy and estimated inversion strength (Guo and Zhou, 200 

2014; Sun et al., 2016). Additionally, GAMIL3 integrates several parameterizations 201 

recommended by CMIP6 to represent anthropogenic aerosol effects (Stevens et al., 202 

2017; Shi et al., 2019). 203 

During optimization, each model simulation is performed for 15 months, forced by 204 

observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model 205 

Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from 206 

1 October 2010 to 31 December 2011, with the first 3 months excluded for model spin-207 
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up, leaving 12 months for analysis against observations. This method is commonly used 208 

for model uncertainty quantification and parameter tuning (Yang et al., 2013; Xie et al., 209 

2023). After optimization, the parameter set that best fits the observations is referred to 210 

as the optimized parameter set. We use this to conduct a 10-year AMIP simulation from 211 

January 1, 2005, to December 31, 2014, enabling comparison with observed climate 212 

data. Additionally, to assess whether tuning atmospheric parameters results in a 213 

reasonable coupled model, the GAMIL3 atmospheric model is coupled with land, ocean, 214 

and sea ice models, and a 30-year piControl simulation is conducted (Eyring et al., 215 

2016). Lastly, three additional sensitivity experiments, varying the initial values of the 216 

first 10 parameters, are carried out to examine the impact of initial parameter selection 217 

on the optimized results. 218 

2.3 Observations and parameter selection 219 

To set up our optimization problem, we focus on the large-scale performance of the 220 

model and consider the differences between land and ocean, particularly in the tropical 221 

region. This region is characterized by distinct air-sea interactions, such as those over 222 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 223 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 224 

Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 225 

into four regions: the northern hemispheric extra-tropical region (θ > 30° N), the 226 

tropical region (30° S ≥ θ ≤ 30° N), subdivided into tropical land and ocean, and the 227 

southern hemispheric extra-tropical region (θ < 30° S). 228 

The observational variables used in this study are detailed in Table 1. While most 229 

variables are divided into four regions—labeled _TROPICSLAND, 230 

_TROPICSOCEAN, _NHX, and _SHX—each with its own target and uncertainty, 231 

NETFLUX is averaged over all regions and serves as a global constraint. Specifically, 232 

the target values for variables T500, RH500, and MSLP are derived from ECMWF 233 

Reanalysis v5 data (ERA5; Hersbach et al., 2020); the radiation variables (OLR, OLRC, 234 

RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy 235 

System (CERES; Wielicki et al., 1998); and the LAT and PRECIP data come from the 236 
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Climatic Research Unit (CRU; Jones et al., 2012; Harris et al., 2017). The uncertainties 237 

of the variables are derived from the absolute error among different data sources, which 238 

will be discussed in a later section. All targets and uncertainties of the variables in Table 239 

1 are for the year 2011, primarily used for model optimization.  240 

The atmospheric model parameters we calibrated are detailed in Table 2, 241 

encompassing selections from deep convection, shallow convection, microphysics, 242 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 243 

their default values and plausible ranges, is based on expert judgment as recommended 244 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 245 

experiments. For visualization, all parameters are normalized based on their plausible 246 

ranges, with 0 representing the minimum value of the range and 1 representing the 247 

maximum one. Then two experiments are conducted to assess the impacts of varying 248 

the number of parameters on the optimized results: 249 

1. We selected the first 10 parameters (listed in the last column of Table 2) from 250 

deep convection, shallow convection, microphysics, and cloud fraction 251 

schemes. These parameters are identified as the most sensitive to the model's 252 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 253 

2. An additional set of the next 10 parameters (also listed in the last column of 254 

Table 2), related to microphysics and turbulence schemes, is included alongside 255 

the initial 10 parameters. This approach aims to explore the impact of varying 256 

the number of tuning parameters on the optimization results. 257 

2.4 Covariance matrices for observations and model 258 

Two covariance matrices need to be prepared before the optimization process 259 

begins. The first matrix assesses the internal variability of the model system (𝐶𝑖). To 260 

derive this, perturbed initial condition experiments are conducted. In this study, these 261 

experiments involve running a total of 20 simulations, each with the three-dimensional 262 

atmospheric temperature initial state perturbed by increments of +1e-20, while all other 263 

settings remain identical to those used in the optimization. The second matrix estimates 264 

the uncertainty of observations ( 𝐶0 ), which is generally diagonal, assuming no 265 
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correlation between different observations, and its values are derived from the 266 

difference between two observation datasets. Specifically, data from ERA5 and 267 

National Center for Environmental Predictions/Department of Energy (DOE) 2 268 

Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive the observation 269 

error for variable T500, RH500, and MSLP. Precipitation data from CRU and Global 270 

Precipitation Climatology Project (GPCP; Adler et al., 2003) are used for Land 271 

Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface Temperature 272 

(BEST; Muller et al., 2013) are used for Land Air Temperature (LAT). For the four 273 

radiation variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on results 274 

from Loeb et al. (2018), giving that a TOA imbalance range of 0-2 W/m² is typical for 275 

single-year simulations (Mauritsen et al., 2012), we set the uncertainty of NETFLUX 276 

at 2 W/m². Both matrices contribute to the total uncertainty in the variables relative to 277 

the target observations. The total covariance matrix 𝐶  is composed of the two 278 

uncertainties introduced above, calculated as: 279 

                           𝐶 = 𝐶0 + 2𝐶𝑖                           (1) 280 

During optimization, all observation values are standardized using the square root 281 

of the diagonal elements of matrix 𝐶. 282 

2.5 Evaluation methods 283 

 The cost function F(p) is used to measure the difference between the simulated 284 

values S and the target observations O based on the parameters p. The cost function is 285 

given by: 286 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 287 

 where S is the simulated values; O is the target (observed) values; C is the 288 

covariance matrix (as discussed above); N is the number of observations; (𝑆 − 𝑂)𝑇 is 289 

the transpose of the difference between simulated and observed values; 𝐶−1 is the 290 

inverse of the covariance matrix; N is the number of tuning parameters. This cost 291 

function quantifies how far the simulation is from the observations, considering the 292 

uncertainty (through C) and correlation between different observations. The cost 293 

function can be modified to include additional constraints, such as the net radiation flux 294 
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at the TOA, along with global averages for surface air temperature and precipitation. 295 

 The Jacobian matrix J is the partial derivatives of the simulated results with respect 296 

to the parameters being optimized. For each simulated model output 𝑆𝑖 and parameter 297 

𝑝𝑗, the Jacobian element 𝐽𝑖𝑗 is given by: 298 

                          𝐽𝑖𝑗 =
𝜕𝑆𝑖(𝑝)

𝜕𝑝𝑗
                              (3) 299 

This measures how much a small change in the parameter 𝑝𝑗  will affect the 300 

simulated model outputs 𝑆𝑖(𝑝), revealing the impact of each parameter on the variables 301 

and providing insights into their sensitivity. The Jacobians are normalized by the 302 

parameter range and internal variability. Further details about the cost function and the 303 

Jacobian are available in Tett et al. (2017). 304 

In order to assess the extent to which the optimization has improved the 305 

performance of the simulated values, the ratios (Z) of the difference between the 306 

optimized and the default one to the standard error was adopted:  307 

       𝑍 =
|𝑉Default−𝑉Observation|−|𝑉Optimized−𝑉Observation|

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                 (4) 308 

The 𝑉Observation  𝑉Default  , and 𝑉Optimized  represent the observation value, 309 

simulated values using the default and optimized parameter sets, respectively. The 310 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  represents the observation error of the corresponding variables. 311 

Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement 312 

is anticipated, and performance may even worsen.  313 

2.6 Optimization algorithm 314 

The challenge of optimizing the model parameters numerically lies in the high 315 

computational cost and potential noise associated with model evaluations, making 316 

traditional derivative-based optimization methods impractical. There are several 317 

optimization algorithms the system provides, such as (derivative-free) Gauss-Newton 318 

variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS 319 

algorithm as it appears to have better performance in model calibration (Oliver et al., 320 

2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett 321 

et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization 322 

method designed to handle nonlinear least-squares problems without requiring 323 
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derivative information. This algorithm is particularly useful in scenarios where function 324 

evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS 325 

constructs simplified linear regression models for the residuals, allowing it to make 326 

progress with a minimal number of objective evaluations (Cartis et al., 2019). 327 

The underlying algorithmic methodology for the DFO-LS algorithm is detailed in 328 

Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed 329 

description of its parameter settings available in Supplementary S1. The optimization 330 

problem is defined as minimizing the sum of the squared residuals  331 

                       𝑓(𝑝): =
∑ 𝑟𝑖

𝑁
𝑖=1 (𝑝)2

𝑁
                        (5), 332 

where 𝑟(𝑝) represents the differences between model outputs and observations; 333 

in our case, 𝑟𝑖(𝑝) ≔ 𝐶
1

2(𝑆𝑖 − 𝑂𝑖) . DFO-LS approximates the residuals without 334 

derivatives by creating a linear regression model at the current iteration. DFO-LS 335 

employs a trust region framework for stable optimization, which dynamically adjusts 336 

the search region to balance exploration and exploitation. After constructing the 337 

regression model, the algorithm solves the trust region subproblem to determine the 338 

step size and direction for updating parameters. The actual versus predicted reduction 339 

in the cost function is calculated to decide whether to accept or reject the step, with 340 

adjustments made to the trust region size accordingly. The algorithm follows these steps: 341 

initialization of parameters and trust region, model construction at each iteration, 342 

solving the trust region subproblem, accepting or rejecting steps, updating the 343 

interpolation set, and checking termination criteria. This structured approach ensures 344 

robust and efficient optimization in minimizing model discrepancies. 345 

3 Results 346 

3.1 1-year AMIP simulations 347 

3.1.1 GAMIL3 10-parameter case 348 

The first experiment aims to optimize the ten sensitive parameters related to 349 

convection and microphysics parameterization schemes (Table 2). In this experiment, 350 

several parameters—including ke and captlmt—were adjusted significantly from their 351 
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default values, while cmftau and c0 showed only minor adjustments (Fig. 2a). Fig. 2b 352 

shows the progression of the cost function over iterations for the 10- and 20-parameter 353 

cases. Note that the cost function is divided by the number of observations, and a 354 

smaller cost function indicates better simulation accuracy against observations. In the 355 

10-parameter case, the system reaches its lowest cost function value of approximately 356 

3.5 after 19 iterations, excluding the initial 10 runs. The cost function drops rapidly 357 

from about 7.5 to 3.5 after the 10 initial runs, followed by a slower decline with some 358 

fluctuations. 359 

Fig. 3 shows the reduction or increase in simulation error in terms of the number 360 

of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of 361 

34 variables (approximately 71%) show Z values greater than zero, indicating improved 362 

performance against the default case. Moreover, for 11 of these 24 variables, the 363 

optimization reduced the error by more than 1 standard error, with 5 of these showing 364 

improvements greater than 3. This is particularly evident in the RSR, MSLP, and the 365 

tropical variables of T500. While most variables can be effectively tuned, several 366 

variables, such as OLR, OLRC, and LAT, are worse than the default case. However, 367 

except for LAT_NHX, the performance of these variables did not degrade by more than 368 

one standard error. The blue dots in Fig. 4 represent the global area-weighted mean of 369 

different variables for the tuning year (2011) in the 10-parameter case. Comparing to 370 

the observational values, the optimization successfully improved most variables (9 out 371 

of 10), bringing them closer to the observations. Although some variables showed slight 372 

deviations from the observations after optimization, nearly all remained within their 373 

uncertainty range (except for OLRC), which is also reasonable in model tuning. 374 

Since the cost function is a simple statistical indicator of the distance between the 375 

area-weighted mean of the simulations and the observations, analyzing the spatial 376 

distribution of the variables is crucial when evaluating the performance of the optimized 377 

parameter sets. Fig. 5a presents Taylor diagrams for all tuning variables under three 378 

parameter cases for the optimized year (2011). The results indicate that, compared to 379 

the default case (green patterns), most variables' performance improved to varying 380 

degrees in the 10-parameter case (blue patterns). For instance, while the standard 381 
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deviation (SD) of the MSLP in the default result was much closer to the observations, 382 

the 10-parameter case exhibited a larger pattern correlation (PC) coefficient and a 383 

smaller root mean square deviation (RMSD). Some variables, including PRECIP, 384 

NETFLUX, and T500, showed improvements in all three metrics (SD, PC, and RMSD). 385 

However, other variables, such as OLR and RH500, showed slight deterioration after 386 

optimization, as partially suggested in Fig. 3. 387 

The "optimized" parameter set referred to in this study is the set where the cost 388 

function reaches its lowest value. However, the robustness of this parameter set, 389 

compared to others with similar cost function values, remains to be evaluated. To 390 

address this, two additional experiments were conducted (Table S1 and Fig. S1), 391 

selecting parameter sets with cost function values closest to the optimized one to 392 

evaluate the potential impact of this choice. Table S1 shows that the parameter values 393 

for the two sets (Experiment1 and Experiment2), which have cost function values close 394 

to the minimum (Optimized), are quite similar, particularly for Experiment1, which has 395 

the closest cost function value. The results from the 10-year AMIP simulations show 396 

that, while most variables exhibit patterns similar to those of the Optimized set, notable 397 

differences are observed in T2M and PRECIP. Overall, although differences in model 398 

behavior arise from the choice of the optimized parameter set, these differences are not 399 

substantial enough to significantly alter the model’s performance. 400 

3.1.2 GAMIL3 20-parameter case 401 

To investigate the impact of different numbers of tuning parameters on 402 

optimization and the robustness of the tuning results, an additional 10 parameters 403 

related to microphysics and turbulence schemes (Table 2) were included alongside the 404 

existing 10 parameters. In the 20-parameter case, the initial perturbations for the 405 

original 10 parameters were kept the same as in the 10-parameter case to ensure a fair 406 

comparison. Comparing the optimal values of the 20-parameter case with the default 407 

values shows that several parameters had large changes. Parameters such as c0_conv, 408 

ke, capelmt, dzmin, Dcs, and ecr showed significant deviations from their default values 409 

(Fig. 2a). Comparing the two sets of optimal parameters reveals both differences and 410 
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consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the 411 

same direction and display similar magnitudes, some parameters, like ke and cmftau, 412 

are adjusted in the opposite direction. These differences may be attributed to the 413 

compensating errors within in the model. When examining the tuning procedure (Fig. 414 

2b), it is evident that the cost function dropped rapidly to a value very close to the 415 

minimum after the initial 20 runs, similar to the 10-parameter case. The system required 416 

a total of 31 runs to reach the lowest cost function, just two more than the 10-parameter 417 

case. This suggests that adding ten additional parameters increases the total number of 418 

evaluations only marginally, indicating that when optimizing with DFOLS, there is no 419 

need to be overly selective about parameter choice. The minimum cost achieved is 420 

comparable to that of the 10-parameter case, with fewer additional runs required after 421 

the initial phase to reach the minimum. This implies that including more tuning 422 

parameters has a small impact on the total cost but enhances tuning efficiency. This 423 

improvement can be attributed to the inclusion of additional parameters related to other 424 

parameterization schemes, which enhances model tuning and yields more realistic 425 

results compared to observations. 426 

Comparing the Z values from the 20-parameter case to those from the 10-parameter 427 

case (Fig. 3), we find that 25 out of 34 variables (approximately 74%) have Z values 428 

greater than zero, slightly higher than in the 10-parameter case. Among these, 11 429 

variables show improvements of more than 1 standard error, with 6 exhibiting 430 

significant improvements of over 3 standard errors (notably in T500 and MSLP), which 431 

is also better than the 10-parameter case. While most variables in the 20-parameter case 432 

demonstrate equal or greater improvements than in the 10-parameter case, some, like 433 

OLR and OLRC, perform worse. The global area-weighted mean of all variables 434 

(shown by red dots in Fig. 4) indicates that, except for OLR, RH500 and PRECIP, 435 

variables improved compared to the default case. Although RH500 shows a greater 436 

deviation from observation, it still falls within the uncertainty range. Significant 437 

differences between the 20-parameter and 10-parameter cases are observed in the two 438 

radiation variables (OLR and RSR) and the two surface-related variables (T2M and 439 

PRECIP). These differences may partly result from certain parameters compensating 440 
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for each other, which will be discussed later. The Taylor diagram in Fig. 5a shows that 441 

most variables have improved compared to the default case. Relative to the 10-442 

parameter case, OLR, RSR, RSRC, MSLP, and PRECIP perform better in the 20-443 

parameter case. However, NETFLUX and T2M perform worse. 444 

3.2 10-year AMIP simulations 445 

Tuning and evaluating the model using only a one-year simulation may introduce 446 

uncertainties due to the model's capacity to simulate phenomena with significant 447 

interannual variability (Bonnet et al., 2024), such as the El Niño-Southern Oscillation 448 

(ENSO). Therefore, a longer simulation with adjusted parameter settings using AMIP 449 

drivers is necessary to assess the robustness of the tuning. Thus 10-year simulations 450 

from 1 January 2005 to 31 December 2014 are conducted for the default and two 451 

optimized parameter sets. Compared to the results from 2011, the 10-year average 452 

AMIP results (Fig. 3b) show no significant differences between the two cases, as both 453 

exhibit similar changes across most variables. For example, T500 and RSR show much 454 

improvement in both cases, while OLR and OLRC perform worse. However, several 455 

variables show differences between the two conditions. For instance, while the 456 

standardized MSLP_TROPICSOCEAN_DGM improved by over 20 in the 2011 457 

simulation with the 10-parameter case, it deviates from the observation by more than 458 

10 standard errors in the 10-year simulation. Additionally, while the 20-parameter case 459 

demonstrated improvement in the 2011 simulation, its performance declined in the 10-460 

year simulation. 461 

The time series of the 10-year AMIP simulations in Fig. 4 show that, for the 10-462 

parameter case, 8 out of 10 variables are either much closer to the observations or very 463 

similar (OLR, OLRC, and OSRC) to those in the default case. Only two variable, 464 

RH500 and PRECIP, are slightly further from the observations but still within 465 

uncertainty. The most striking finding is the improvement of the variables related to the 466 

equilibrium of the climate system (RSR and NETFLUX). For the default case, due to 467 

the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m2. In 468 

addition, T500 in the default case is too cold by almost 2K. After optimization, while 469 
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OLR shows little change, RSR decreased by nearly 5 W/m2, considerably reducing the 470 

model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the 471 

results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case, 472 

compared to the default, all variables—except RH500, OLR, T2M and PRECIP—show 473 

either reduced biases or biases that are very close (OLRC and OSRC) to those in the 474 

default case. This is less successful than the 10 parameter case, where 8 variables 475 

exhibit reduced or similar bias relative to the default. However, T500 and the MSLP—476 

two variables that deviated significantly from the observations in the default and 10-477 

parameter cases—have been further tuned and now align more closely with observation. 478 

Both the optimized cases show that OLR and PRECIP perform notably worse than in 479 

the default case, with both variables being too low compared to the observations. 480 

 Similar to the Taylor diagram of the 1-year AMIP results, the 10-year AMIP 481 

simulations (Fig. 5b) also demonstrate varying degrees of improvement across the three 482 

metrics for most variables in both optimized cases. For instance, both cases improve all 483 

three metrics for PRECIP, NETFLUX, and RSRC compared to the default case, 484 

consistent with the 1-year AMIP results. While PRECIP, RSRC, T2M, and NETFLUX 485 

in both optimized cases exhibit similar behave to the 1-year AMIP results, MSLP, 486 

RH500, and RSR behave differently. Comparing this with Figs. 3 and 4, the results 487 

suggest that this tuning yields only minor improvements to the spatial patterns of the 488 

variables but primarily reduces their biases relative to observations. Examining zonal 489 

averages (Fig. 6) reveals more specific details, particularly the differences between 490 

tropical and extra-tropical regions. T500 and RSR have large tropical biases which 491 

tuning considerably reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger 492 

biases in extra-tropical, especially polar regions. These regional biases may come from 493 

uncertainties in complex high-latitude processes, such as sea ice and snow cover 494 

feedback mechanisms, which are not well represented in the model (Goosse et al., 2018). 495 

Across the three cases, average performance is similar to that found earlier, with T500, 496 

RH500, OLR, RSR, T2M, and PRECIP most affected by tuning and most sensitive to 497 

parameter changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. 498 

Additionally, while changing physical parameters generally affects the entire 499 
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atmosphere, some variables respond differently in specific regions. For example, 500 

RH500 shows a more pronounced response in tropical regions, while land T2M 501 

responds more noticeably in the extra-tropics. 502 

3.3 Atmospheric model evaluation 503 

What parameters and processes would affect these model tuning behaviors? 504 

Analyzing the Jacobian results derived from the perturbation parameter simulations can 505 

provide insights into how and to what extent various parameters impact the variables. 506 

As shown in Fig. 7, parameters such as c0_conv, cmftau, rhcrit, rhminl, rhminh, and 507 

Dcs significantly affect simulated variables, particularly NETFLUX, 508 

Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and 509 

TEMP@500. Notably, most of these parameters have also been adjusted significantly 510 

in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH 511 

threshold for triggering deep convection and is a parameter with a strong influence on 512 

RH. Fig. 2a shows that rhcrit decreased from the default case, whose value is 0.85, to 513 

the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82, 514 

respectively. A lower rhcrit significantly promotes deep convection by reducing the 515 

triggering threshold, which enhances water vapor transport from the lower to the mid 516 

and upper atmospheric layers. This could lead to a drop in RH below troposphere and 517 

a rise above it (Fig. 8a). This effect is especially pronounced in the tropics, where deep 518 

convection dominates vertical moisture transport (Fig. 4b, 6b, and 8b). Additionally, 519 

low RH below troposphere can limit moisture availability, weakening updrafts and 520 

reducing overall precipitation (blue line in Fig. 4h). This negative impact on 521 

precipitation outweighs the positive effect of increased precipitation efficiency 522 

(c0_conv; Fig. 7). 523 

A deficit in low-level cloud fraction is evident in Fig. 8c-8d, primary due to the 524 

increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-525 

parameter cases, respectively. Although the 10-parameter case has a higher threshold 526 

for low level cloud formation than the 20-parameter case, Fig. 8c-8d shows the opposite 527 

result, which can be explained by the compensatory effects of other parameters. 528 
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Optimized results indicate that cmftau, another key parameter, has a lower value in the 529 

20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case 530 

(~4931). This decrease in cmftau likely strengthens shallow convection while 531 

weakening deep convection, reducing upward water transport and RH throughout the 532 

troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018). 533 

Consequently, the lower low-level cloud fraction in the 20-parameter case, compared 534 

to the 10-parameter case, reflects the compensatory effects of these key parameters, 535 

with the influence of the reduced cmftau outweighing that of rhminl. High-level clouds 536 

trap heat by limiting radiation emission into space, thereby warming the atmosphere, 537 

while low-level clouds reflect sunlight, producing a cooling effect. Therefore, a 538 

reduction in low-level clouds allows more shortwave radiation to penetrate the lower 539 

atmosphere, reducing outgoing shortwave radiation to space (blue lines in Fig. 4e and 540 

6e) and warming the region, including near the surface (blue lines in Fig. 4g and 6a;  541 

Fig. 8e). 542 

Comparing the 20-parameter case to the default case, the tuning results show that 543 

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has 544 

been significantly increased. This adjustment suggests that a higher Dcs leads to 545 

increased RSR and T2M, while also resulting in lower OLR and PRECIP (Fig. 7). 546 

Specifically, clouds with higher ice content trap more OLR from the Earth's surface, 547 

potentially amplifying the greenhouse effect by retaining more infrared radiation (red 548 

lines in Fig. 5c and 7c). This results in a warming effect, particularly at lower 549 

atmospheric levels and even near the surface, especially during nighttime or in polar 550 

regions (red lines in Fig. 4g, 6a, and 6g; Fig. 8f). Additionally, raising the 551 

autoconversion threshold from ice to snow is expected to allow more ice to remain in 552 

the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 4h). 553 

These effects align with the results shown in Fig. 7, with the exception of RSR. 554 

Theoretically, increasing Dcs (which delays the conversion from ice to snow) could 555 

increase ice mass, raising cloud optical thickness and enhancing the cloud's ability to 556 

reflect incoming shortwave radiation. However, this expectation contrasts with the 557 

findings in Figs. 4e and 6e, which show a slightly lower RSR in the 20-parameter case 558 

https://doi.org/10.5194/egusphere-2024-3770
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

compared to the default case. This discrepancy can be attributed to compensatory effect 559 

among different parameters. As shown in Fig. 7, changes to the parameters c0_chg, 560 

rhminl, and cmftau in the 20-parameter case negatively impact RSR, potentially 561 

offsetting the positive effect of Dcs and resulting in an RSR slightly lower than that of 562 

the default case.  563 

3.4 Coupled model results 564 

In order to evaluate the performance of different parameter sets in long-term 565 

climate simulations, it is essential to apply them to a coupled model. Here, the GAMIL3 566 

atmospheric model, coupled with land model (CLM2; Bonan et al., 2002) and ocean 567 

and sea ice model (LICOM2.0; Liu et al., 2013), was used to assess whether tuning 568 

atmospheric parameters leads to a reasonable coupled model. 569 

In the default case the model starts with a large negative NETFLUX of around -4 570 

W/m² (Fig. 9a), consistent with the results in Fig. 4j, indicating that the climate system 571 

is losing energy at this stage. As the model integrates, the NETFLUX increases, 572 

approaching zero after approximately five model years, achieving a stable energy 573 

budget for the remaining simulation period. This change in NETFLUX is found to be 574 

almost equally driven by a ~2 W/m² reduction in both RSR (Fig. 9b) and OLR (Fig. 9c) 575 

simultaneously. However, despite these radiation variables, particularly the NETFLUX, 576 

approaching a stable state, the ocean continues to lose energy rapidly (Fig. 9d) with no 577 

signs of stabilization by the end of the simulation. For the T2M, the tuning target is 13.6 578 

± 0.5°C (Williamson et al., 2013), which differs significantly from the model’s default 579 

case results (Fig. 9e). Consequently, although the NETFLUX appears to reach a stable 580 

state, the system continues to lose energy and remains far from the tuning target in the 581 

default case. Furthermore, the piControl simulation for the default case is notably 582 

fragile and prone to crashes due to unstable iterations, particularly in contrast to the two 583 

optimized cases. This instability poses a critical challenge, especially for long-term 584 

climate simulations. 585 

 For both optimized cases, the NETFLUX (Fig. 9a) remains stable throughout the 586 

30-year simulations, with values of about 2 W/m². Although slightly further from the 587 
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target of 0 W/m², they are still within the model spread range of -3 to 4 W/m² (Mauritsen 588 

et al., 2012). Specifically, the change in NETFLUX in the 10-parameter case is 589 

primarily driven by a decrease in RSR (Fig. 9b), while in the 20-parameter case, it is 590 

mostly due to a reduction in OLR (Fig. 9c), consistent with the results in Figs. 4c and 591 

4e. Both the volume-averaged ocean temperature (Fig. 9d) and the T2M (Fig. 9e) 592 

exhibit a slight initial adjustment during the first five years, followed by stabilization.  593 

Results from the simulated SST anomalies in Fig. 10a–10c for the default case 594 

show strong cold anomalies relative to observations, with maximum deviations 595 

exceeding -4°C over the North of Pacific and Atlantic. The simulated SST anomalies 596 

in Fig. 10d–10i indicate that both optimized cases show substantial improvement over 597 

the default case in terms of SST patterns and deviations, although some negative 598 

deviations in the northern Pacific and Atlantic persist—a common issue for most GCMs 599 

(Zhang and Zhao, 2015; Wang et al., 2018). Previous findings suggest that the two 600 

optimized cases exhibit cloud fraction significantly different from the default case, with 601 

simulated radiation improvements primarily observed in shortwave and longwave 602 

radiation in each case, respectively. Therefore, it is necessary to investigate the 603 

shortwave and longwave cloud forcing in these two cases (Fig. 11). The results for both 604 

cases show that the combined effect of these two cloud forcings acts as a significant 605 

positive influence globally, contributing to the ocean surface flux and increasing ocean 606 

temperature. Specifically, the shortwave cloud forcing has a greater weight than the 607 

longwave in the 10-parameter case, mainly due to the parameters rhcrit and rhminl, as 608 

mentioned earlier. In contrast, the longwave cloud forcing outweighs the shortwave in 609 

the 20-parameter case, primarily due to the effects of Dcs. While the shortwave cloud 610 

forcing exerts a negative effect over the tropical ocean, the longwave cloud forcing 611 

provides a significant compensatory effect. A similar behavior is observed in the 20-612 

parameter case. 613 

Overall, the two optimized cases result in a more realistic coupled model, not only 614 

maintaining the model's energy balance and reducing climate drift, but also improving 615 

the simulated ocean state, such as SST distribution. Although the two optimized cases 616 

exhibit different behaviors—with the 10-parameter case showing lower RSR and the 617 
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20-parameter case showing lower OLR—tuning has allowed them to achieve stability 618 

through distinct mechanisms. 619 

3.5 Sensitivity of initial parameters 620 

As stated in the previous section, the initial parameter values used for tuning are 621 

primarily informed by expert judgment, which has been recognized as crucial and 622 

necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al., 623 

2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter 624 

choices influence tuning results, we conducted three additional sensitivity experiments 625 

with randomly selected initial parameter values (Table S2), focusing on the first 10 626 

parameters. 627 

The optimized parameter values in these randomized experiments (represented by 628 

stars in Fig. 2a) exhibit significantly larger spreads compared to the default and original 629 

optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and 630 

c0, which nearly span their entire plausible ranges. This finding indicates that the model 631 

could reach entirely different optimized states depending on initial values. During the 632 

tuning process, the cost function (Fig. 2c) for these cases exhibited a rapid decrease, 633 

stabilizing at similar values across all three experiments after approximately 10 634 

iterations, with an additional 10–20 runs required to reach the optimized state. This 635 

pattern further demonstrates the efficiency and robustness of the tuning algorithm. 636 

Given the substantial differences in the optimized parameters, it is worthwhile to 637 

further investigate their Jacobian differences to gain a more comprehensive 638 

understanding of each parameter's impact on the variables. Fig. 12 shows the Jacobian 639 

ranges for four cases (including the original optimized case), with Jacobian calculated 640 

around the optimized parameter set for each case. The results generally demonstrate 641 

consistency with the parameter sensitivities shown in Fig. 7. Variables sensitive to most 642 

parameters exhibit substantial variability, while highly sensitive parameters, such as 643 

c0_conv, cmftau, rhcrit, rhminl, and rhminh, introduce considerable uncertainty across 644 

multiple variables, depending on their initial values and interactions with other 645 

parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter 646 
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changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by 647 

most parameters, also aligning with the findings in Fig. 7. 648 

The performance of these three optimized parameter sets in the 10-year AMIP 649 

simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with 650 

observations across all cases, primarily due to the additional constraint incorporated 651 

into the tuning algorithm. However, notable differences across different cases remain, 652 

with each case following a distinct optimization pathway, though most results still fall 653 

within uncertainty ranges. For example, the third experiment achieved the closest 654 

alignment for T500 but at the expense of T2M and PRECIP compared to other cases, 655 

highlighting inherent trade-offs and model structural errors that hinder simultaneous 656 

optimization of these variables. As seen in prior findings, RSRC and MSLP proved 657 

difficult to tune, while OLRC was adjustable but deviated in the opposite direction from 658 

observations, accompanied by a discrepancy in RH500 alignment. 659 

Overall, these sensitivity experiments confirm the efficiency of the tuning 660 

algorithm and underscore the importance of expert judgment in selecting initial 661 

parameter values. Expert selection not only ensures satisfactory model performance at 662 

the start of tuning but also enhances tuning effectiveness, even though structural errors 663 

in the model remain. 664 

4 Discussion 665 

In this study, we developed an objective and automatic parameter tuning 666 

framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method 667 

to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The 668 

results highlight the effectiveness of this method in tuning atmospheric parameters, 669 

particularly those initially set based on expert judgment, as demonstrated by notable 670 

improvements in model accuracy across multiple variables and enhanced climate 671 

system stability. However, several aspects of this work require further clarification. 672 

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set 673 

at which the cost function achieves its minimum value. However, results in Figs. 2b 674 

and 2c indicate that, for each case, there are several cost function values close to this 675 
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minimum. We have shown that these differences are not substantial enough to 676 

significantly alter the model’s performance. However, this finding suggests that 677 

parameter ranges associated with similar cost function values may provide valuable 678 

insights into the acceptable parameter space for model optimization. We acknowledge 679 

that focusing exclusively on minimizing cost function values to obtain a single 680 

optimized parameter set during tuning can increase the risk of overfitting and 681 

compensating errors, which is a common challenge in model tuning. Although the 682 

results of this study show no clear signs of overfitting—both the 10- and 20-parameter 683 

optimized cases, starting from expert-judged initial values, ultimately produce 684 

reasonable coupled model results—it remains important to carefully consider potential 685 

overfitting impacts. 686 

Secondly, this study shows that tuning either different numbers of parameters or 687 

varying initial parameter values can yield diverse optimized results, each improving 688 

certain aspects of the model. This suggests that although tuning can lower the cost 689 

function to comparable levels, the final tuned state of the model is not necessarily 690 

unique—an common issue encountered in model tuning (Hakkarainen et al., 2013; 691 

Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors 692 

within the model and uncertainties in the observational data. On one hand, introducing 693 

constraints, such as assigning greater weight in key variables during tuning, could help 694 

achieve more realistic results. For instance, applying constraints on NETFLUX during 695 

tuning ensures consistently good performance across all the cases in the 10-year AMIP 696 

simulations. In the 20-parameter case, adding constraints on OLR and RSR would 697 

maintain their performance while also improving T500 and MSLP. On the other hand, 698 

while different parameter sets satisfied the lowest cost function in different ways, it is 699 

important to remember that the cost function is simply a statistical measure of the 700 

distance between the area-weighted mean of the simulations and observations. 701 

Therefore, a comprehensive evaluation is essential to identify the most suitable 702 

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and 703 

aligning statistical indicators with observations, it is crucial to evaluate the spatial 704 

distributions of variables, the equilibrium state of the climate system in coupled models, 705 
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and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These 706 

aspects should be further evaluated to ensure robust model performance. 707 

 Some limitations remain. For instance, although the coupled model simulations 708 

show improvements in energy stability and reduced climate drift, certain regional biases 709 

in SST persist. These biases suggest that while tuning enhances model performance, 710 

there may be systematic issues within the model’s physics that cannot be fully 711 

addressed through parameter tuning alone. Resolving these regional discrepancies may 712 

require further refinement of model physics or additional modifications to the tuning 713 

framework. Additionally, the optimized cases show a relatively large energy imbalance 714 

at the TOA. Although still within model uncertainty, this issue warrants further 715 

investigation. One possible cause could be the non-conservation of energy in the 716 

atmospheric model. Preliminary results indicate that the difference between the TOA 717 

and Earth’s surface energy imbalances in the 1-year AMIP tuning is approximately 1.4 718 

W/m², highlighting one of the model’s structural errors. This suggests that even in the 719 

optimized cases, the atmospheric model may be consuming excess energy, a bias that 720 

could carry over to the coupled model. Consequently, one of the lessons from this study 721 

is that when tuning the model, attention should also be paid to structural errors, 722 

particularly those related to energy conservation. 723 

5 Conclusions 724 

The study focuses on optimizing an atmospheric model by simultaneously 725 

perturbing and tuning multiple parameters associated with convection, microphysics, 726 

turbulence, and other physical schemes. Two primary experiments were conducted: one 727 

involving the adjustment of 10 parameters, and the other with 20 parameters. In the 10-728 

parameter tuning, significant changes were made to several sensitive parameters, 729 

resulting in a notable reduction in the cost function and improved model accuracy. Out 730 

of 34 variables, 24 showed improved performance, although some remained 731 

challenging to optimize due to structure errors in the model. In the 20-parameter tuning, 732 

additional parameters related to microphysics and turbulence were introduced, resulting 733 

in slight performance improvements for 25 out 34 variables. However, certain variables 734 
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experienced a decline in performance. While the 20-parameter case achieved a lower 735 

cost function more quickly than the 10-parameter case, the increased complexity 736 

required careful management of parameter interactions and compensatory effects.  737 

To evaluate the robustness of the tuning results, we conducted 10-year AMIP 738 

simulations. The findings showed that the optimized parameter sets maintained their 739 

performance improvements over extended simulation periods, though variables like 740 

MSLP exhibited variability depending on the specific period analyzed. Time series 741 

analyses indicated that the optimized models more accurately captured the equilibrium 742 

of the climate system, particularly by improving the balance of outgoing shortwave and 743 

longwave radiation and stabilizing surface temperatures. However, some variables 744 

remained challenging to optimize consistently across different regions and timescales. 745 

The optimized parameter sets were further tested in a coupled model setup that 746 

integrated land, ocean, and sea ice components. The results demonstrated improved 747 

energy budget stability, reducing climate drift and leading to more realistic SST 748 

simulations. Both the 10- and 20-parameter optimizations yielded more reasonable 749 

behavior in the coupled model, though persistent regional biases, particularly in the 750 

northern Pacific and Atlantic, remained. 751 

Three additional experiments, in which the initial values of the first 10 parameters 752 

were randomly selected, were conducted to evaluate its impact on the optimized results. 753 

The results further confirm the efficiency and robustness of the algorithm, as it rapidly 754 

minimizes the cost function after the first 10 runs, although the optimized parameter 755 

values and their performance across different cases show significant variation. Overall, 756 

these findings emphasize the importance of expert judgment in parameter selection and 757 

its role in enhancing model performance. 758 

In conclusion, the proposed DFO-LS-based tuning framework presents a robust 759 

and efficient approach for enhancing climate model performance. This work was 760 

primarily conducted by a researcher over 12 months, highlighting the efficiency of the 761 

approach in terms of human resources. The adaptability of this methodology to other 762 

GCMs holds great potential for accelerating model development and improving the 763 

accuracy and reliability of future climate projections. By integrating this framework 764 
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into broader model tuning efforts, the climate modeling community can make 765 

significant strides in addressing parametric uncertainties and advancing the precision 766 

of climate forecasts. 767 
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 1040 
Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter 1041 

are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—1042 

observational error and model internal variation—help adjust parameter values in the objective 1043 

function. The DFO-LS algorithm optimizes the parameters, and the post-processing module 1044 

analyzes sensitivity, cost function results, and generates visualizations. 1045 

Table 1: Observations used for model evaluation, along with their target values and associated 1046 

uncertainties .  1047 

Variables 

name 
Description Classifications Target Uncertainty 

MSLP 
Mean sea level 

pressure (hPa); 

MSLP_NHX_DGM 277.52 22.85 

MSLP_TROPICSLAND_DGM 35.42 13.69 

MSLP_TROPICSOCEAN_DGM 187.34 1.04 

T500 
Temperature at 

500hPa (K) 

TEMP@500_NHX 251.42 0.12 

TEMP@500_SHX 249.38 0.56 

TEMP@500_TROPICSLAND 266.27 0.27 

TEMP@500_TROPICSOCEAN 266.60 0.23 

RH500 

Relative 

humidity at 

500hPa (%) 

RH@500_NHX 52.75 7.04 

RH@500_SHX 51.05 4.79 

RH@500_TROPICSLAND 40.36 6.67 

RH@500_TROPICSOCEAN 32.57 3.01 

NETFLUX 

Net heat flux at 

top of 

atmosphere 

(W/m2) 

netflux_GLOBAL 0.98 2.0 

OLR 

Outgoing long 

wave flux at top 

of atmosphere 

(W/m2) 

OLR_NHX 223.57- 

2.5 
OLR_SHX 216.86 

OLR_TROPICSLAND 255.09 

OLR_TROPICSOCEAN 261.35 
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OLRC 

Outgoing long 

wave clearsky 

flux at top of 

atmosphere 

(W/m2) 

OLRC_NHX 247.71 

4.5 
OLRC_SHX 243.59 

OLRC_TROPICSLAND 288.64 

OLRC_TROPICSOCEAN 290.21 

RSR 

Outgoing 

shortwave flux 

at top of 

atmosphere  

(W/m2) 

RSR_NHX 100.91 

2.5 
RSR_SHX 107.55 

RSR_TROPICSLAND 116.04 

RSR_TROPICSOCEAN 86.92 

RSRC 

Outgoing 

shortwave 

clearsky flux at 

top of 

atmosphere  

(W/m2) 

RSRC_NHX 57.98 

5.0 

RSRC_SHX 53.65 

RSRC_TROPICSLAND 75.67 

RSRC_TROPICSOCEAN 42.42 

PRECIP 

Total 

precipitation 

(m/s) 

Lprecip_NHX 1.60e-8 0.35e-9 

Lprecip_SHX 1.42e-8 4.29e-9 

Lprecip_TROPICSLAND 4.47e-8 0.37e-9 

T2M 
Temperature at 

2 meters (K) 

LAT_NHX 275.72- 0.06 

LAT_SHX 280.08 0.49 

LAT_TROPICSLAND 297.10 0.31 

 1048 

Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible 1049 

ranges. 1050 

Parameters Description Range 
Default 

Values 

c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 1.e-3 

rhcrit Threshold value for RH for deep convection 0.65-0.95 0.85 

captlmt threshold value for cape for deep convection 20-200 70 

alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2 

ke 
Evaporation efficiency of deep convection 

precipitation 
1.e-6-1.5e-5 9.e-6 

c0 rain water autoconversion coefficient 3.e-5-2.e-4 5.e-5 

cmftau characteristic adjustment time scale 1800-14400 4800 

rhminl Threshold RH for low stable clouds 0.8-0.99 0.95 

rhminh Threshold RH for high stable clouds 0.4-0.99 0.5 

dthdpmn 
Most stable lapse rate below 750hPa, stability 

trigger for stratus clouds 
-0.15- -0.05 -0.08 

sh1 Parameters for shallow convection cloud fraction 0.0-1.0 0.04 

sh2 — 10-1000 500 
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dp1 Parameters for deep convection cloud fraction 0.0-1.0 0.1 

dp2 — 10-1000 500 

ccrit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5 

dzmin minimum cloud depth to precipitate 0.0-100.0 0.0 

Dcs Autoconversion size threshold for ice to snow 1.e-5-1.e-3 2.e-4 

ecr collection efficiency cloud droplets/rain 0.5-2.0 1.0 

ai Fall speed parameter for stratiform cloud ice 500-1500 700 

qcvar 
Inverse relative variance of subgrid scale cloud 

water 
0.1-2.0 1.0 

 1051 

 1052 
Figure 2. Normalized values of tuning parameters for default and optimized cases (a), along with 1053 

changes in the cost function value over iterations for the 10- and 20-parameter cases (b) and three 1054 

sensitivity experiments (c).1055 
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 1056 
Figure 3. Z values for the 1-year (a) and 10-year (b) AMIP simulations. Solid and hollow dots 1057 

represent tuning with 10 and 20 parameters, respectively. Blue dots indicate improved performance, 1058 

while red dots show deterioration. The black dashed line at Z = 0 separates improved from non-1059 

improved variables. 1060 
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 1061 

Figure 4. 1-year AMIP results (dots) and time series (lines) for three cases for: T500 (a), RH500 1062 

(b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), PRECIP (h), MSLP (i) and NETFLUX (j). 1063 

The cases include the default case (green lines and dots), 10-parameter case (blue lines and dots), 1064 

and 20-parameter case (red lines and dots). The black lines and shadings represent the observations 1065 

and their associated uncertainties. 1066 
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  1067 
Figure 5. Taylor-diagram showing all variables for three cases in 2011 (a) and the 10-year AMIP 1068 

simulations (b). Shown are default case (green), 10-parameter case (blue), and 20-parameter case 1069 

(red). 1070 

 1071 
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 1072 

Figure 6. Meridional distributions of the annual mean bias between three cases and observations 1073 

for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), PRECIP (h) and MSLP 1074 

(i) from the 10-year AMIP simulations. Shown are default case (green), 10-parameter case (blue), 1075 

and 20-parameter case (red).  1076 
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 1077 

Figure 7. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance 1078 

metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black 1079 

parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case. 1080 

Red and blue indicate positive and negative effects, respectively, with darker shades showing greater 1081 

impact. 1082 
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 1083 

Figure 8. Latitude-pressure anomaly distributions relative to the default case for relative humidity 1084 

(a, b), cloud fraction (c, d), and temperature (e, f) from 10-year AMIP simulations: 10-parameter 1085 

case (a, c, e) and 20-parameter case (b, d, f). 1086 
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 1087 
Figure 9. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c) 1088 

radiation, mean volume-averaged ocean temperature (d), and T2M in the default (green), 10- 1089 

parameter (blue), and 20-parameter cases (red) cases.  1090 
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Figure 10. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003) 1092 

from the last 15 years of piControl simulations for the default case (a, b, c) and two optimized 1093 

cases (d-i). 1094 

 1095 

Figure 11. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between 1096 

the two optimized cases and the default case. 1097 
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 1098 

Figure 12. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized 1099 

parameter set across four cases: the original optimized case and three sensitivity cases. 1100 
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